Genetic screening and diagnosis of primary immune deficiency

Anthony J. Infante, MD, PhD
Division of Immunology & Infectious Diseases
Disclosures

• Consultant
 – TDSHS newborn screening program

• Site PI for clinical trials
 – Grifols SCIG phase III trial
 – Baxalta HyQvia monitoring

• No associations with commercial diagnostic entities
Changing landscape of primary immune deficiency (PID)

• Over 100 individual, genetically well-defined, immunologically-mediated syndromes
 – Many represented by only a handful of cases
 – Most revealed by familial clustering

• New categories
 – Immune dysregulation syndromes
 – Autoinflammatory syndromes
 – Innate immunity defects

• Novel genetics
 – Dominant negative mutations
 – Gain-of-function (GOF) mutations
Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency

Waleed Al-Herz1,2, Aziz Bousfiha3, Jean-Laurent Casanova4,5, Talal Chatila6, Mary Ellen Conley 4, Charlotte Cunningham-Rundles7, Amos Etzioni 8, Jose Luis Franco9, H. Bobby Gaspar 10*, Steven M. Holland 11, Christoph Klein12, Shigeaki Nonoyama13, Hans D. Ochs14, Erik Oksenhendler 15,16, Capucine Picard5,17, Jennifer M. Puck 18, Kate Sullivan19 and Mimi L. K.Tang20,21,22

Frontiers in Immunology
CLASSIFICATION ARTICLE
published: 22 April 2014

doi: 10.3389/fimmu.2014.00162
Who walks in the door?

<table>
<thead>
<tr>
<th>Categories</th>
<th>Global</th>
<th>U.S.A.</th>
<th>International</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined T and B-cell Immunodeficiencies</td>
<td>3,163</td>
<td>608</td>
<td>2,555</td>
</tr>
<tr>
<td>Other Well Defined Immunodeficiency Syndromes</td>
<td>9,427</td>
<td>3,413</td>
<td>6,014</td>
</tr>
<tr>
<td>Diseases of Immune Dysregulation</td>
<td>1,553</td>
<td>282</td>
<td>1,271</td>
</tr>
<tr>
<td>Congenital Defects of Phagocyte Numbers and Function</td>
<td>3,189</td>
<td>461</td>
<td>2,728</td>
</tr>
<tr>
<td>Predominantly Antibody Deficiencies</td>
<td>31,162</td>
<td>8,388</td>
<td>22,774</td>
</tr>
<tr>
<td>Defects in Innate Immunity</td>
<td>328</td>
<td>118</td>
<td>210</td>
</tr>
<tr>
<td>Autoinflammatory Disorders</td>
<td>3,600</td>
<td>352</td>
<td>3,248</td>
</tr>
<tr>
<td>Complement Deficiencies</td>
<td>3,652</td>
<td>564</td>
<td>3,088</td>
</tr>
<tr>
<td>Other Immunodeficiencies</td>
<td>4,290</td>
<td>1,416</td>
<td>2,874</td>
</tr>
</tbody>
</table>

Total

- **Global**: 60,364
- **U.S.A.**: 15,602
- **International**: 44,762
Most outcomes are good

• Antibody deficiencies
 – 50% of cases
 – Upper and lower respiratory infections
 – Treatable with IGRT

• SCIDS
 – 25% of cases
 – Almost all diagnosed by newborn screen
 – 80-90% curable with HSCT
Meeting the Diagnostic Challenge

- Awareness, outreach, and referral
- More sophisticated immunophenotyping and functional analysis
- Genetic diagnosis
 - Candidate gene approaches
 - Newborn screening
 - Genomic analysis
Case 1

• 7 mo. old boy, recently emigrated from India, parents contracted to work at large local business
• Presented to ER with fever, deltoid abscess, axillary lymphadenopathy
• Returned to ER with inability to bear weight on left leg
<table>
<thead>
<tr>
<th>Laboratory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CBC</td>
<td>ALC: 216 cells/mm³</td>
</tr>
<tr>
<td>Lymphocyte subsets</td>
<td>CD3: 6 cells/mm³; CD4: 2; CD8: 0; CD19: 1, CD16/56: 189</td>
</tr>
<tr>
<td>HIV1/2</td>
<td>Negative</td>
</tr>
<tr>
<td>Immunoglobulins</td>
<td>IgA undetectable, IgM undetectable, IgG 140 mg/dl</td>
</tr>
<tr>
<td>CSF</td>
<td>83 WBCs/mm³, 50% PMNs, 42% MNCs, 2% L; protein 48 mg/dl; glucose 49 mg/dl</td>
</tr>
<tr>
<td>Microbiology</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Blood</td>
<td>No bacterial growth at 48 hrs.; later positive for AFB identified as M. bovis/BCG</td>
</tr>
<tr>
<td>CSF</td>
<td>Negative bacterial meningitis screen and gram stain; negative fungal smear and culture; negative PCR for HSV-1 and 2, CMV</td>
</tr>
<tr>
<td>Stool</td>
<td>Enterovirus isolated; identified as iVDPV1</td>
</tr>
<tr>
<td>Lymph node FNA</td>
<td>AFB stain positive; identified as M. bovis/BCG</td>
</tr>
</tbody>
</table>
A Phenotypic Approach for IUIS PID Classification and Diagnosis: Guidelines for Clinicians at the Bedside

Journal of Clinical Immunology
August 2013, Volume 33, Issue 6, pp 1078–1087
Algorithmic approach
Case 1

- Genetic diagnosis of RAG-1 deficient SCIDS
- Vaccine-associated paralytic polio (VAPP)
- BGG-osis
- Family history of consanguinity and early infant death
- After meeting with several consultants and ethics committee, parents decided to withdraw life support
Vaccine-Associated Paralytic Poliomyelitis and BCG-osis in an Immigrant Child with Severe Combined Immune Deficiency Syndrome — Texas, 2013

Robert Trimble, MD¹, Jane Atkins, MD², Troy C. Quigg, DO³, Cara C. Burns, PhD⁴, Gregory S. Wallace, MD⁴, Mary Thomas, MBBS⁵, Anil T. Mangla, PhD⁵, Anthony J. Infante, MD, PhD¹ (Author affiliations at end of text)
SCIDS treatment is highly effective if done early in life

Possible screening approaches

• Absolute lymphocyte count
• Lymphocyte subsets by flow cytometry
 – Low or absent T cells (typically <300)
 – Especially low naïve T cells (CD45RA)
• Genetic analysis for candidate gene mutations
 – 14 genes at last count
• Absent or very low TREC
What are TREC{s?}
Newborn Screening for Severe Combined Immunodeficiency in 11 Screening Programs in the United States

Antonia Kwan, PhD, MRCPCH1,2; Roshini S. Abraham, PhD3; Robert Currier, PhD4; Amy Brower, PhD5; Karen Andruszewski, BS6; Jordan K. Abbott, MD7; Mei Baker, MD8,9; Mark Ballow, MD10; Louis E. Bartoshesky, MD11; Francisco A. Bonilla, MD, PhD12,13; Charles Brokopp, DrPH14; Edward Brooks, MD15; Michele Caggana, ScD16; Jocelyn Celestin, MD17; Joseph A. Church, MD18,19; Anne Marie Comeau, PhD20,31; Jordan K. Abbott, MD7; Morten J. Cowan, MD1,2; Charlotte Cunningham-Rundles, MD22; Trivikram Dasu, PhD23; Nina Dave, MD24; Karen Andruszewski, BS6; Jordan K. Abbott, MD7; Morten J. Cowan, MD1,2; Charlotte Cunningham-Rundles, MD22; Trivikram Dasu, PhD23; Nina Dave, MD24; Maria T. De La Morena, MD25; Ulrich Duffner, MD26; Chin-To Fong, MD27; Lisa Forbes, MD28,29; Debra Freedenberg, MD30; Erwin W. Gelfand, MD7; Jaime E. Hale, BS20; I. Celine Hanson, MD28,29; Beverly N. Hay, MD31; Diana Hu, MD32; Anthony Infante, MD, PhD15; Daisy Johnson, BSN30; Neena Kapoor, MD18,19; Denise M. Kay, PhD16; Donald B. Kohn, MD33; Rachel Lee, PhD30; Heather Lehman, MD10; Zhili Lin, PhD34; Fred Lorey, PhD4; Aly Abdel-Mageed, MD, MBA26; Adrienne Manning, BS35; Sean McGhee, MD36,37; Theodore B. Moore, MD33; Stanley J. Naides, MD38; Luigi D. Notarangelo, MD12,13; Jordan S. Orange, MD28,29; Sung-Yun Pai, MD12,13; Matthew Porteus, MD, PhD36,37; Ray Rodriguez, MD, JD, MPH, MBA24; Neil Romberg, MD39; John Routes, MD40; Mary Ruehle, MS41; Arye Rubenstein, MD42; Carlos A. Saavedra-Matiz, MD16; Ginger Scott, RN30; Patricia M. Scott, MT43; Elizabeth Secord, MD41; Christine Seroogy, MD44; William T. Shearer, MD, PhD28,29; Subhadra Siegel, MD45; Stacy K. Silvers, MD46; E. Richard Stiehm, MD33; Robert W. Sugerman, MD46; John L. Sullivan, MD31; Susan Tanksley, PhD30; Millard L. Tierce IV, DO41; James Verbsky, MD, PhD40; Beth Vogel, MS16; Rosalyn Walker, MD24; Kelly Walkovich, MD21; Jolan E. Walter, MD, PhD47,48; Richard L. Wasserman, MD, PhD46; Michael S. Watson, MS, PhD5; Geoffrey A. Weinberg, MD27; Leonard B. Weiner, MD49; Heather Wood, MS6; Anne B. Yates, MD24; Jennifer M. Puck, MD1,2

Results

• Infants born from January 2008 through July 2013 were included. Representatives from 10 states plus the Navajo Area Indian Health Service contributed data from 3,030,083 newborns screened with a TREC test.

• Screening detected 52 cases of typical SCID, leaky SCID, and Omenn syndrome, affecting 1 in 58,000 infants (95%CI, 1/46,000-1/80,000)

• Survival of SCID-affected infants through their diagnosis and immune reconstitution was 87%(45/52), 92%(45/49) for infants who received transplantation, enzyme replacement, and/or gene therapy
Case 2

• 10 month old boy transferred for neuro rehab
• PMH
 – *S. pneumo* meningitis age 4 mos., recovered
 – *S. pneumo* meningitis age 9 mos., devastated
• Immunizations up-to-date
• Hypogammaglobulinemia noted
III. Predominantly antibody deficiencies

Recurrent bacterial infections eg: Otitis, pneumonia, sinusitis, diarrhoea, sepsis

Serum Immunoglobulin Assays: IgG, IgA, IgM

- **IgG, IgA and/or IgM ↓**
 - Exclude 2° causes: drugs [Hx], myeloma [bone marrow], lymphoma / thymoma [CT]. Ig loss (not hypo-IgM) in urine, GI, or skin

- **IgG and IgA↓ and normal or increased IgM**
 - Healthy infant, no increased bacterial infections. Normalisation at 36-60 months
 - Transient hypogammaglobulinemia of infancy

- **IgA↓**
 - Specific antibody responses
 - (anti-PPS antibodies and Tet/Dip/hib +/- reimmunisation)
 - Healthy infant, no increased bacterial infections. Normalisation at 36-60 months
 - Transient hypogammaglobulinemia of infancy

- **Normal IgA, IgG, IgM**
 - 1 IgG subclasses 1, 2, 3 levels (measure at least two)
 - 2 Specific antibody responses (anti-PPS antibodies and Tet/Dip/hib)

- **CD19+ absent**
 - X-Linked Agammaglobulinaemia (BTK)
 - Rare AR
 - Agammaglobulinaemia: deficiencies of µ, heavy chain (KHM), IgG1 (CD79a), IgG2 (CD79b), IgG3 (CD22), BLNK (CD19), CD19*, CD21*, CD22, CD40, CD40L, P55 subunit of PI3K (PIK3R1)

- **CD19+ > 1%**
 - Common Variable Immunodeficiency Disorders (CVID)
 - Very rare AR disorders:
 - ICOS*, CD19*, CD21*, CD22, LRBA
 - Less common AR hyper IgM disorders, with lymphoid hyperplasia:
 - AID-def (AICDA), UNG-def (UNG), Others (unknown genes)
 - XL, CD40L (CD40LG)
 - Or
 - AR, CD40* (CD40)

- **IgA with Specific Ab deficiency**
 - Doubtful clinically significant
 - Check specific antibody responses
 - Doubtful clinical significance
 - Specific Ab deficiency

- **No**
 - Selective IgA

- **Yes**
 - IgG1 & IgG2 are Low
 - Only IgG1 is Low
 - Only IgG2 is Low

- **Check IgG again!**
Case 2: definitive diagnosis

- Very low B cells in blood
- BTK mutation detected
- Dx: X-linked agammaglobulinemia (XLA)
Delay in diagnosis common in XLA
“Severe bacterial infections (pneumonia, sepsis, meningitis, osteomyelitis) ... may occur in a normal child, a second occurrence should alert the physician to possible immunodeficiency.” Conley & Stiehm, Immunologic Disorders in Infants & Children, 4th edition, 1996.

Should this advice be modified in the era of highly effective bacterial vaccines for *H. influenzae, S. pneumoniae, N. meningitidis*?
Effects of vaccination

HIB

PCV
A Devastating Outcome in Undiagnosed X-Linked Agammaglobulinemia– A Call for Earlier Screening

Karen E. Bruner, MD¹, Anthony J. Infante, MD, PhD²

¹ Wilford Hall Ambulatory Surgical Center, Joint Base San Antonio, ²University of Texas Health Sciences Center San Antonio

Trainee poster award, 2nd place, ACAI, 2014
When to screen for XLA?

• After a single episode of invasive bacterial infection?
• Newborn screening?
XLA in children hospitalized for community acquired pneumonia

- 254 subjects (131 males) median age 4.5 years
- Hospitalized for CAP
- Screened for hypogammaglobulinemia and vaccine responses
- 2 boys found to have genetically confirmed XLA
- “several” other children with “humoral immunity abnormalities”
- Proposal: screen all boys <5 yo with CAP

NBS for XLA?

- Avoid rare but devastating outcomes
- Prevent bronchiectasis
- Reduce hospitalizations for CAP?
Multiplex RT-PCR for TRECs and KRECs

- 2560 freshly collected, anonymous DBS/Guthrie cards
- 28 stored cards from patients later diagnosed with assorted immune deficiencies
- RT-PCR for TRECs, KRECs and β-actin
- Results expressed as copies per μL of blood

CONCLUSION: screening for XLA is feasible and can be combined with SCIDS screening in a cost-effective manner
Assessment of newborn screening for PID

- Statewide newborn screening has been successfully implemented for SCIDS
- Expected results of early SCIDS detection appear to be realized
- XLA can have adverse consequences when diagnosis is delayed
- Newborn screening for XLA is feasible and may be warranted
Novel syndromes/genetics

- Loss-of-function mutations
 - Traditional way of thinking about primary immune deficiency
- Dominant negative (interfering) mutations
- Gain-of-function mutations
 - Novel syndromes often involving autoimmunity and lymphoproliferation
- Examples: STAT3 mutations
LOF

(a) Null loss-of-function mutation (m)
STAT3

• “Signal transducer and activator of transcription”
STAT3 phenotypes

• STAT3 LOF mutations
 – Autosomal dominant hyper-IgE syndrome
 – Lung and skin infections
 – Skeletal and tooth abnormalities

• STAT3 GOF mutations
 – Autoimmunity-diabetes, enteropathy, ITP, et al.
 – Lymphadenopathy
AD-HIES/Job’s-Buckley/STAT3 LOF
Mechanism of dominant negative mutations

Figure 8–67. Molecular Biology of the Cell, 4th Edition.
STAT3 GOF mutation family

Table 1. Patient characteristics.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age at onset, Current age</th>
<th>STAT3 variant</th>
<th>Hematologic</th>
<th>Endocrine</th>
<th>GI</th>
<th>Other</th>
<th>Lymphoproliferation</th>
<th>Post-natal short</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 9</td>
<td><1y, 28y</td>
<td>p.A703T</td>
<td>AIHA, AITP, AIN</td>
<td>No</td>
<td>Small bowel thickening</td>
<td>LIP, atopic dermatitis, alopecia</td>
<td>Yes</td>
<td>HSM</td>
</tr>
<tr>
<td>Patient 10</td>
<td>15y, Dec 28y</td>
<td>p.A703T</td>
<td>AIHA, AIN</td>
<td>No</td>
<td>No</td>
<td>LIP</td>
<td>Yes</td>
<td>HSM</td>
</tr>
<tr>
<td>Patient 11</td>
<td>12y, F 24y</td>
<td>p.A703T</td>
<td>AITP, AIN</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>HSM</td>
</tr>
</tbody>
</table>

Mutation analysis by WES
Milner, et al., Blood 2014
GOF mutation
Anti-IL-6R therapy in STAT3 GOF

Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations
Clinical manifestations:

STAT3 LOF = AD-HIES
- Mucocutaneous infections (S. aureus and C. albicans)
- Pneumonia (S. aureus and S. pneumoniae), pneumatoceles
- Dermatitis
- Connective tissue abnormalities

Clinical manifestations:

STAT3 GOF
- ALPS-like
- IPEX-like
- STAT5b-deficiency-like
- Various organ autoimmunity
- Repeated infections
- Immune deficiency: hypo-IgG, reduced switched memory B cells

Loss of function
- ↑ IgE
- ↓ Th17
- ↓ T follicular helper
- ↓ B-cell maturation and function

Gain of function
- ↑ IL-6 signaling
- ↑ SOCS3
- ↓ pSTAT5
- ↓ pSTAT1
- ↓ Tregs
Summary:
Changing landscape of PID

- Improved outcomes through newborn screening
- Novel syndromes with novel genetic mechanisms
- Powerful genetic and genomic tools