Respiratory Failure / Persistent Pulmonary Hypertension (PPHN) in Neonates
Syed K. Shah, MD
Assistant Professor, Division of Neonatology
Department of Pediatrics

Disclosure
I have no actual or potential conflict of interest in relation to this presentation.

Outline
- Lung and Vascular Development
- Fetal Circulation and Postnatal Transition
- Pathophysiology of Neonatal Respiratory Failure / PPHN
- Management of PPHN
 - Conventional Mechanical Ventilation
 - High Frequency Ventilation
 - Medications; Inotropes & Vasodilators
 - Nitric Oxide
 - Surfactant
 - ECMO

Lung Development
Stages of lung development
- Day 26 gestation- lung bud begins from foregut
- Embryonic stage: Sacules develop 2 on left, 3 on right
- Pseudoglandular stage: budding and branching to terminal bronchioles
- Canalicular stage: Capillaries develop close to airway epithelium and respiratory bronchioles form

Lung Development
Saccular stage:
- Primitive alveoli form, become lined by type 1 alveolar cells which allow gas exchange
- Sacules subdivide into terminal airway clusters
- Increased vascularization of alveoli

Alveolar stage:
- Type II cells surfactant production
- Further alveolar development- secondary septae, alveolar ducts

Lung Development Timeline

Timeline:
- TE Fistula
- CDH
- Lung Hypoplasia
- Lung Development

Timeline:
- 4-7 weeks
- 8-13 weeks
- 13-28 weeks
- 28 weeks
- Postnatal
Lung Development - Vascularity

Double capillary network fails to fuse → Alveolar-Capillary Dysplasia

Fetal Circulation

Pulmonary Vascular Transition

Fetal Circulation: PPHN

Potential Causes of Respiratory Failure:
- Congenital Diaphragmatic Hernia (CDH)
- Meconium Aspiration Syndrome (MAS)
- Sepsis / Pneumonia
- PPHN
- RDS in late preterm/term
- Air leak
Diagnosis of PPHN

- Pulmonary hypoplasia
 - Severe on ipsilateral side
 - Variable on contralateral side
 - Immature, abnormal lung
- Vascular complications

Congenital Diaphragmatic Hernia

- High mortality = historically 50%, now much less
- ECMO survival = 54%
 - Non-transient, underlying abnormal lung

Meconium Aspiration Syndrome

- Most common reason for neonatal ECMO overall, highly successful (94% ECMO survival)
 - Referred early
 - Non-homogeneous disease—areas of atelectasis mixed with over-distention
 - Hypoxia/Acidosis/PPHN/Air leak

Meconium Aspiration Syndrome

- Etiology/physiology
 - Chronic asphyxia
 - Surfactant dysfunction – toxic pneumonitis
 - Air trapping
- Treatment
 - Suctioning decreases incidence of mild & moderate cases, but not severe MAS
 - Management of PPHN
 - ECMO if pre-ECMO therapies fail
Pneumonia
- Much less common reason for ECMO referral
- Viral and bacterial
- Long runs
 - Average length = 210 hours
- Survival poor for referrals
 - Often identified late in course
 - ECMO survival = 58%

Respiratory Distress Syndrome
- Potential ECMO candidate down to 35 weeks GA
- Surfactant deficiency +/- immature lung structure
- Homogeneous disease, generally responds to surfactant, HFV, or in rare event short ECMO run
 - 84% ECMO survival

Persistent Pulmonary Hypertension
- End result of MAS, CHD, sepsis, RDS
- Oligohydramnios/pulmonary hypoplasia, asphyxia...or idiopathic primary issue
- 5-10% require ECMO
 - 79% survival
 - Need to treat underlying cause, if known

Air Leak Syndrome
- Uncommon reason for requiring ECMO
- Non-homogeneous disease
 - But responds well to HFOV/Jet, which allows ventilation without high PIP
- Intermediate success
 - ECMO survival = 68%

Management of PPHN
- Mechanical Ventilation
 - SIMV modes
 - HFV
- Medications
 - Inotropes
 - Vasodilators
 - Surfactant

Mechanical Ventilation
Escalation of Resp Management

- Mainstay of treatment of neonatal respiratory failure
- Improved CO₂ removal by increased minute ventilation
- Improved O₂
 - Increased FiO₂
 - Increased Paw

But...it may cause
- Oxygen / inflammation injury
- Pressure / volume injury

Mechanical Ventilation

Conventional Ventilation

- "Old School"
- Hyperventilation to induce respiratory alkalosis
 - Well known to decrease pulmonary vasoconstriction
 - Mechanism unclear, but independent of NO
 - Short term benefit
 - Aggressive use of pressors and volume
 - 100% FiO₂

Conventional Ventilation

- Adverse outcome in PPHN significantly related to duration of hyperventilation
- Hyperventilation associated with sensorineural hearing loss
- Oxygen toxicity
 - Direct injury

Oxygen Toxicity

- Permissive hypercapnia/normocapnia
- Decreased duration of ventilation
- Lower tidal volume strategies
- Acceptance of low/normal pO₂ levels
- Lower PIP and higher PEEP
- Avoid reduction/swings in cerebral blood flow

Current Practice
SIMV in Neonates

- Theoretical advantage
 - Decreased air leak
 - Decreased work of breathing
 - Improved stability of BP, CBF, minute ventilation

- However
 - Mostly extrapolated from adult literature
 - Few small suggestive “trend” studies only

High Frequency Ventilation

- More successful with RDS or pneumonia than CDH or MAS
- Responders usually demonstrate response within 2-4 hours
- Among ECMO candidates:
 - Carlo: HFJV reduced P_{aw} and PaCO$_2$, but no difference in outcomes vs CMV
 - Clark: 31% vs 60% failure for HFOV vs CMV
 - May offer additional benefit with NO

High Frequency Ventilation

- HFJV, HFOV
- Theoretical advantage
 - Animal literature
 - Decreased HMD, lung injury in surfactant deficient models (baboon, rabbit)
 - Premature infant
 - When used correctly, may decrease CLD
 - Concern over IVH risk
 - Extrapolate to older patient, other diseases?
 - Adequate ventilation without high PIP

Medical Therapy: Inotropes

- Raises systemic MAP, reduces $R \rightarrow L$ shunt
- Dopamine
 - Increases SVR and PVR
 - May lead to decreased LV output
- Dobutamine
 - Inotrope + vasodilator
 - May increase LV output by decreasing afterload
Medical Therapy: Inotropes

- Epinephrine
 - Shown to increase BP & decrease PA pressure at low dose
 - At 0.2-0.8 mcg/kg/min may cause both systemic and pulmonary vasodilation
 - May have greater effect on SVR than PVR

Medical Therapy: Nitric Oxide

- Produced by NO synthase from L-arginine
- Activates guanylate cyclase by binding to heme component
- C-GMP binds to potassium channels
- Blocks influx of calcium

Medical Therapy: Nitric Oxide

- High affinity for heme proteins
 - When delivered by inhalation, acts selectively on pulmonary vasculature
- Well studied in animals and term infants
 - Dose range 5-80 ppm
 - Rapid pulmonary vasodilation

Medical Therapy: Nitric Oxide

• Meta-analysis of 9 randomized trials:
 - 58% of hypoxic near-term infants responded
 - Response within 30-60 minutes
 - PaO2 increased average of 45 torr
 - Risk of death or need for ECMO: 66% RR
• Concerns
 - Methemoglobinemia
 - Increased bleeding time?
 - Rebound effect (induction of phosphodiesterase V)
 - Long term unknown – neurodevelopment?

Flolan (Epoprostenol, PG I2)

- Prostacyclin, IV infusion
- Being used more in neonates, potential complement to nitric oxide
- More extensive experience with pulm HTN in adults
- Very short half-life

Vasodilators for PPHN
Medical Therapy: Surfactant

- **Without Surfactant**
 - Airways stay open
 - Higher pressure due to smaller radius
 - More likely to collapse and get harder to inflate

- **With Surfactant**
 - Airways stay open
 - Lower pressure due to larger radius
 - Less likely to collapse and easier to inflate

Surfactant Use

- Standard therapy for primary surfactant deficiency
 - Improved survival and decreased morbidity
 - Incidence of BPD unchanged?

- Surfactant deficiency/dysfunction in other disease states
 - MAS: direct chemical effect
 - CDH: immature lung function

Summary of Management

Extra Corporeal Membrane Oxygenation (ECMO)

- Form of cardiopulmonary bypass that provides support for patients with reversible respiratory and/or cardiac failure

Modes of ECMO:
- Venoarterial (VA)
- Venovenous (VV)

ECMO Indications

- Neonatal Respiratory Failure:
 - Congenital Diaphragmatic Hernia (CDH)
 - Meconium Aspiration Syndrome (MAS)
 - Sepsis/pneumonia
 - PPHN
 - RDS in late preterm/term
 - Air leak

- Oxygenation Index
 - \[\frac{(Paw \times FIO2)}{PaO2}\] x 100
 - OI > 40 x 3 hrs
 - Post ductal
 - AaDO2
 - \[\frac{(Patm – 47 \times FIO2)}{p a O 2 – p C O 2}\]
 - AaDO2 > 610 x 8 hours or > 600 x 12 hours
ECMO Contraindications

- Significantly premature (<34 weeks, < 2 kg)- Risk for IVH
- Severe asphyxia with multi-organ system injury
- Prolonged vent course
- Certain congenital malformations
- Ongoing hemorrhage or bleeding diathesis

ECMO Complications

<table>
<thead>
<tr>
<th>Physiologic Complications</th>
<th>Mechanical Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intracranial Bleeding</td>
<td>Failure of oxygenator</td>
</tr>
<tr>
<td>Bleeding from surgical site</td>
<td>Pump failure</td>
</tr>
<tr>
<td>Hemolysis</td>
<td>Tubing rupture</td>
</tr>
<tr>
<td>Seizures</td>
<td>Cannula</td>
</tr>
<tr>
<td>Neurologic Complications</td>
<td></td>
</tr>
<tr>
<td>Arrhythmia</td>
<td></td>
</tr>
<tr>
<td>Pneumothorax</td>
<td></td>
</tr>
</tbody>
</table>

Potential ECMO Candidate

- Post term, BG delivered via stat C-section for failure to progress and persistent late fetal decelerations
- Pregnancy was complicated with meconium stained amniotic fluid and chorio. at OSH
- Severe perinatal depression, intubated at 11 minutes of life and received surfactant after that

Potential ECMO Candidate

- NEURO: Placed on cooling protocol due to severe hypoxic ischemic encephalopathy
- RESP: Initial blood gas pH 6.92 and BE -23.5. LA 10.7. Oxygen Index: rapidly increased from 58 to 80 by 12hrs of life. A chest tube was placed for a left pneumothorax
- CV: Hypotension: on dopamine, dobutamine, epi and hydrocortisone
- ID: Blood and trach culture positive for E.coli at 6hrs of life
- Heme: Anemic and coagulopathic

Potential ECMO Candidate

- UHS transport team was called at around 12 hours of life and arrived at ~ 16 hrs of life. Upon arrival, infant oxygen saturations were in 60’s on 100 % FIO2
- During the whole course (24 hours of life), blood gases showed persistent acidosis (ph < 6.97) and worsening of respiratory failure
 - **Did the baby meet the ECMO criteria?**
 - **Would you place the baby on ECMO?**

Summary

- Newborn Lung is still developing when newborn lung disease occurs
- Disease states are generally complicated by pulmonary hypertension, exacerbating the hypoxic respiratory failure
- Large number of ventilatory strategies, devices, and medical therapies are available
- Needs more studies to find out the un-answered questions
Questions, Comments?

References

- ELSO Neonatal Respiratory Failure Supplement to the ELSO General Guidelines 2013.
- University of Rochester Medical Center, Rochester, NY, Neonatal ECMO guidelines 2014.