Community Acquired Pneumonia in Children
An Evidence Based Approach To Evaluation and Management

Ricardo Quiñonez, MD
Baylor College of Medicine
Texas Children’s Hospital
Section of Pediatric Hospital Medicine

Disclosure
I do not have any disclosures or conflicts of interest to reveal

Outline
• Background
• Etiology
• Diagnosis
• Management

Background
• Definition - Pneumonia
 - Inflammation of one or both lungs, usually caused by infection from a bacterium or virus or, less commonly, by a chemical or physical irritant
• WHO Radiographic Definition of Pneumonia
 - A dense opacity that may be a fluffy consolidation of a portion or whole of a lobe or of the entire lung, often containing air-bronchograms and sometimes associated with pleural effusion

World Health Organization Pneumonia Vaccine Trial Investigators’ Group, WHO, 2001

Background
• Community Acquired Pneumonia (CAP)
 - The presence of signs and symptoms of pneumonia in a previously healthy child, due to an infection of the pulmonary parenchyma that has been acquired outside of the hospital.
 - < 7 days from hospital (CAP Guidelines, 1998)
• Hospital Acquired Pneumonia (HAP)
 - 48-72 hours from stay in hospital
• Healthcare-Associated Pneumonia (HCAP)
 - Nursing homes, long term care facilities

Background
• World-wide 150 million new cases in children per year
• 11-20 million hospitalizations
• 4 million annual deaths
• Leading cause of mortality under 5 years of age
 WHO, 2004
Background – National Inpatient

2006 Pneumonia hospital stays for children only

<table>
<thead>
<tr>
<th>Age group</th>
<th>Total number of discharges</th>
<th>LOS days (mean)</th>
<th>In-hospital deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>167,221</td>
<td>3.3</td>
<td>257</td>
</tr>
<tr>
<td><1</td>
<td>43,103</td>
<td>3.5</td>
<td>51</td>
</tr>
<tr>
<td>1-4</td>
<td>76,912</td>
<td>3.0</td>
<td>89</td>
</tr>
<tr>
<td>5-9</td>
<td>29,781</td>
<td>3.2</td>
<td>16</td>
</tr>
<tr>
<td>10-14</td>
<td>11,728</td>
<td>7.01</td>
<td>4.1</td>
</tr>
<tr>
<td>15-17</td>
<td>3,059</td>
<td>3.59</td>
<td>4.9</td>
</tr>
<tr>
<td>Male</td>
<td>91,518</td>
<td>3.3</td>
<td>125</td>
</tr>
<tr>
<td>Female</td>
<td>74,703</td>
<td>3.1</td>
<td>122</td>
</tr>
<tr>
<td>Missing</td>
<td>1,154</td>
<td>2.5</td>
<td>4</td>
</tr>
</tbody>
</table>

Weighted national estimates for children 0-17 years from HCUP Kids’ Inpatient Database, 2006, Agency for Healthcare Research and Quality (AHRQ)

Burden of Disease

- Prospective cohort in Israel
- 213 children (< 3y) in with CAP
 - Outpatient and inpatient subjects
 - WHO radiographic definitions used
- Febrile 4.9 days
- “Sick” 7-14 days
- Parents work interrupted 4.2 days

- Shoham, et al., Pediatrics, 2005

Outline

- Background
- Etiology
- Diagnosis
- Management

Etiology - limitations

- Difficult to obtain specimens
- Difficult to differentiate between infection and colonization
- Most studies pre-PCV7
- No standard diagnostic criteria
- Age dependent
- Most studies in hospitalized children
- Frequent co-infections

CAP Etiology

<table>
<thead>
<tr>
<th>Age</th>
<th>S. pneumo</th>
<th>M. pneumo</th>
<th>C. pneumo</th>
<th>Virus</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4 Yr</td>
<td>24-33%</td>
<td>4-6%</td>
<td>1-3%</td>
<td>28-37%</td>
</tr>
<tr>
<td>5-9 Yr</td>
<td>14-36%</td>
<td>7-30%</td>
<td>9-13%</td>
<td>21-28%</td>
</tr>
<tr>
<td>10-16 Yr</td>
<td>29-31%</td>
<td>14-51%</td>
<td>14-35%</td>
<td>0-4%</td>
</tr>
</tbody>
</table>

- McCracken, PIDJ, 4/2000

Hospitalized CAP

JUVÉN, T et al, PIDJ, 4/2000

- Three year prospective study in Finland
- 254 hospitalized children, mean age 3.8 years
- Acute and convalescent serum available for all subjects
- Possible causative organism identified in 85% of subjects
- Tested for 17 different pathogens (bacteria and viruses)
Etiology by Age

<table>
<thead>
<tr>
<th>Age</th>
<th>Total</th>
<th>Viral</th>
<th>Bacterial</th>
<th>Mixed</th>
</tr>
</thead>
<tbody>
<tr>
<td><2</td>
<td>108</td>
<td>86</td>
<td>51</td>
<td>37</td>
</tr>
<tr>
<td>2 to 5</td>
<td>84</td>
<td>49</td>
<td>47</td>
<td>28</td>
</tr>
<tr>
<td>>5</td>
<td>62</td>
<td>23</td>
<td>36</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>254</td>
<td>158</td>
<td>134</td>
<td>77</td>
</tr>
</tbody>
</table>

- 62% viral infection
- 53% bacterial
- 30% mixed

Hospitalized CAP

Michelow et al., Pediatrics 2004

- Prospective cohort, Dallas, 1999-2000
- 6wk-18y/o
 - Inclusion: Fever, clinical signs and infiltrate
 - Exclusion: Bronchiolitis, immune issues
- 154 subjects
 - Identified etiology in 80%
 - Extensive etiologic evaluations
 - Blood, pleural bacterial cx
 - Pneumococcal PCR
 - Viral cx and DFA (RSV/Paraflu/Adeno/Flu)
 - Serology for Chlamydia pneumoniae and trachomatis, Mycoplasma pneumoniae and viruses listed above

Etiology Type

Virus

- RSV: 73 (29)
- Rhinovirus: 58 (24)
- Parainfluenza: 25 (10)
- Adenovirus: 19 (7)
- Influenza: 10 (4)
- Coronavirus: 7 (3)
- HHV-6: 7 (3)
- EBV: 1
- VZV: 1

Bacteria

- S. pneumoniae: 52 (20)
- H. influenzae: 22 (9)
- M. pneumoniae: 17 (7)
- M. catarrhalis: 10 (4)
- C. pneumoniae: 7 (3)
- S. pyogenes: 3 (1)
- C. trachomatis: 2 (1)

Hospitalized CAP: Etiology by Age

- 37% Viral
- 23% Bacterial
- 19% Mixed
- 21% Unknown

Hospitalized CAP Etiology

- Bacterial: 23%
- Mixed: 19%
- Viral: 37%
- Unknown: 21%

Hospitalized CAP Etiology

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>No. of Episodes</th>
<th>Bacterial</th>
<th>Viral</th>
<th>Mixed</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. influenzae</td>
<td>28</td>
<td>6</td>
<td>15</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>S. pneumoniae</td>
<td>21</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>S. pyogenes</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>M. pneumoniae</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>M. catarrhalis</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C. pneumoniae</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C. trachomatis</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V. vulnificus</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: The categories of co-infections with bacteria and with viruses are not mutually exclusive.
Hospitalized CAP Etiology

2m – 5 years 99 patients 86% etiology

- Mixed/Multiple 29%
- Viral 14%
- Bacterial 12%
- 5 years 2m – 5 years 99 patients 86% etiology

“Atypical” Bacteria

- *M. pneumoniae and C. pneumoniae*
- Children older than 5 yrs significant burden
- Emerging disease in children ≤ 5 yrs
 - Esposito et al, Eur Resp J 2000
 - Principi et al, CID, 2001
 - Esposito et al, CID, 2002
 - Thumere et al, Pediatr Pulm, 2003
 - Michelow et al, Pediatrics, 2004

Hospitalized CAP – Atypical Bacteria

Esposito et al, CID, 2002

- 196 children hospitalized with CAP age 2 – 5 years
 - PCR and acute and convalescent serology
 - C. pneumonia
 - M. pneumonia
 - S. pneumonia
 - Comparison between typical and atypical pathogens:
 - Clinical presentation
 - Radiographic findings
 - Laboratory data
 - Treatment and outcomes

Bacterial CAP 2-5 y/o

Table 1. Characteristics of 196 children evaluated in a study of community-acquired pneumonia.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male sex</td>
<td>99 (50.5)</td>
</tr>
<tr>
<td>Age, mean years ± SD</td>
<td>3.70 ± 0.875</td>
</tr>
<tr>
<td>Acute bacterial infection</td>
<td>98 (50.3)</td>
</tr>
<tr>
<td>Acute atypical bacterial infection</td>
<td>44 (22.5)</td>
</tr>
<tr>
<td>Due to M. pneumoniae</td>
<td>30 (15.3)</td>
</tr>
<tr>
<td>Due to C. pneumoniae</td>
<td>6 (3.1)</td>
</tr>
<tr>
<td>Due to mixed M. pneumoniae and C. pneumoniae</td>
<td>10 (5.1)</td>
</tr>
<tr>
<td>Mixed S. pneumoniae-atypical bacterial infection</td>
<td>16 (8.2)</td>
</tr>
<tr>
<td>Due to S. pneumoniae and M. pneumoniae</td>
<td>14 (7.1)</td>
</tr>
<tr>
<td>Due to S. pneumoniae and C. pneumoniae</td>
<td>2 (1.0)</td>
</tr>
<tr>
<td>Undiagnosed cases</td>
<td>98 (43.9)</td>
</tr>
</tbody>
</table>

Esposito et al, CID, 2002

Etiology Summary

- Overall, viruses are the most common cause of CAP
- Children hospitalized with CAP have a high incidence of bacterial CAP
- *S. pneumoniae* is still the most important bacterial pathogen
- Atypical bacteria are a significant cause of pneumonia even in young children (<5 y/o)
- Mixed infections are common in children hospitalized with CAP

Table 1. Infections caused by viruses and atypical bacteria diagnosed in 75 children (age 5-14 years) hospitalized with community-acquired pneumonia.

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>No. (%) of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viruses</td>
<td></td>
</tr>
<tr>
<td>Paramyxovirus</td>
<td>6 (8)</td>
</tr>
<tr>
<td>Type 1</td>
<td>4</td>
</tr>
<tr>
<td>Type 2</td>
<td>1</td>
</tr>
<tr>
<td>Adenovirus</td>
<td>9 (12)</td>
</tr>
<tr>
<td>Influenza virus</td>
<td>5 (7)</td>
</tr>
<tr>
<td>Subtype H1N1</td>
<td>3</td>
</tr>
<tr>
<td>Subtype H3N2</td>
<td>3</td>
</tr>
<tr>
<td>Respiratory syncytial virus</td>
<td>2 (3)</td>
</tr>
<tr>
<td>Human metapneumovirus</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Human rhinovirus</td>
<td>34 (45)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>50 (60)</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>5 (7)</td>
</tr>
<tr>
<td>Mycoplasma pneumoniae</td>
<td>16 (21.3)</td>
</tr>
<tr>
<td>Chlamydia pneumoniae</td>
<td>2 (2.7)</td>
</tr>
<tr>
<td>Total diagnosed cases</td>
<td>75 (100)</td>
</tr>
</tbody>
</table>

Tsolia et al, CID, 2004
Viruses are the most common etiology in children < 5 years of age, RSV #1
In the SW United States data confirm the importance of S. pneumonia, M. pneumonia and C. pneumonia as causes of bacterial CAP
Mixed etiology for 30-50% of cases of pneumonia in children

CAP Diagnosis - Things to know
No gold standard
Combination
- Clinical data
- Radiographic data
- Laboratory data
Confirmation of etiology
- Seldom done
- Burdensome
- Limited clinical utility
- Low yield

Texas Children's Hospital Community-Acquired Pneumonia (CAP) Clinical Guideline

Clinical Data
Several studies attempt to predict pneumonia using clinical findings
Overall - high sensitivity low specificity
Classic study
 - Prospective study of 136 patients in ED
 - Studied 29 different signs and symptoms
 - Tachypnea best single predictor
 - The absence of tachypnea, nasal flaring, grunting, rales, decreased BS is high neg predictive value

Clinical Data
Lynch, et al., Pediatrics, 3/04
- Clinical predictors of positive CXR
- Prospective cohort - ED
- 570 patients
- Clinical presentation compared to CXR
 - Predictive signs and symptoms (p < 0.05)
 - Fever, decreased BS, crackles, retractions, grunting
 - Tachypnea p = 0.001
 - Fever + any above sign
 - Sensitivity > 90%
 - Best combination - fever and tachypnea
 - Specificity 19.4%

Clinical Data
Mahabee et al, Clin. Pedia., 2005
- 510 patient
- 2-59 months
- Any sign/symptom of respiratory infection got CXR
- Predictive factors:
 - Older age p = .005
 - Tachypnea p = .001
 - O2 sat ≤ 95% p = .001
 - Nasal flaring p < .001
 - Fever, crackles, retractions, grunting not predictive

Outline
- Background
- Etiology
- Diagnosis
- Management
Clinical Data atypical vs. *S. pneumoniae*

Table 1. Clinical characteristics of 152 children at the time of enrollment in a study of pediatric community-acquired pneumonia.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Haemophilus influenzae</th>
<th>Other atypical pathogens</th>
<th>Mixed atypical pathogens</th>
<th>Undiagnosed causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean years ± SD</td>
<td>3.66 ± 3.69</td>
<td>5.76 ± 4.60</td>
<td>8.76 ± 4.00</td>
<td>9.66 ± 4.98</td>
</tr>
<tr>
<td>Cough</td>
<td>23 (47.0)</td>
<td>36 (66.0)</td>
<td>6 (16.0)</td>
<td>48 (85.0)</td>
</tr>
<tr>
<td>Adenoid</td>
<td>21 (42.1)</td>
<td>20 (36.0)</td>
<td>6 (16.0)</td>
<td>40 (71.0)</td>
</tr>
<tr>
<td>Signs of infection</td>
<td>8 (16.0)</td>
<td>11 (19.6)</td>
<td>7 (18.0)</td>
<td>15 (27.0)</td>
</tr>
<tr>
<td>Chest x-ray</td>
<td>31 (64.0)</td>
<td>33 (58.0)</td>
<td>11 (28.0)</td>
<td>40 (76.0)</td>
</tr>
<tr>
<td>Severe disease</td>
<td>15 (30.0)</td>
<td>16 (28.0)</td>
<td>6 (16.0)</td>
<td>21 (38.0)</td>
</tr>
<tr>
<td>Fever</td>
<td>13 (26.0)</td>
<td>10 (18.0)</td>
<td>8 (22.0)</td>
<td>21 (38.0)</td>
</tr>
<tr>
<td>Nausea</td>
<td>41 (83.0)</td>
<td>41 (74.0)</td>
<td>16 (44.0)</td>
<td>79 (141.0)</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>6 (12.0)</td>
<td>7 (13.0)</td>
<td>2 (5.0)</td>
<td>11 (20.0)</td>
</tr>
</tbody>
</table>

NOTE: Cells show no. (% of patients, unless otherwise noted.

TEXAS CHILDREN’S HOSPITAL COMMUNITY-ACQUIRED PNEUMONIA (CAP) CLINICAL GUIDELINE

- A complete physical examination should be performed. A combination of clinical findings, including vital signs and pulse oximetry, is most predictive in determining CAP.

- A small percentage of children < 5 years of age may present with abdominal pain or with fever and no signs of respiratory illness.

Imaging - Chest X-Ray (CXR)

- “Gold Standard” for Dx of pneumonia
- Significant intra and inter-observer variation in interpretation
 - Davies et al, Pediatr Infect Dis J, 1997
- Limited correlation with etiology
 - Virksi et al, Thorax, 2002
- Poor correlation with clinical criteria
- Does not affect clinical outcomes

CXR

- Alveolar, lobar infiltrate
- Interstitial Infiltrate
CXR Virus vs. Bacteria

Virkki et al, Thorax, 2002
- Evaluated 254 cases of suspected CAP
- Etiology found in 85% of cases
- Compared to CXR findings

Results:
- **Alveolar** and especially **lobar** - 78% bacterial (p=0.001)
- **Interstitial** - 50% bacterial, 50% viral

CXR Findings

Atypical vs. S pneumonia

<table>
<thead>
<tr>
<th>Finding</th>
<th>Streptococcus pneumonia (n=48)</th>
<th>Atypical bacteria (n=48)</th>
<th>Mixed S. pneumonia and atypical bacteria (n=18)</th>
<th>Unligated cases (n=39)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td>6 / 10.4</td>
<td>6 / 0.3</td>
<td>12 / 17.2</td>
<td>17 / 12.3</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>3 / 9.2</td>
<td>4 / 0.7</td>
<td>4 / 15.3</td>
<td>9 / 13.0</td>
</tr>
<tr>
<td>Parinal lung infiltrates</td>
<td>15 / 31.3</td>
<td>20 / 0.3</td>
<td>10 / 54.3</td>
<td>16 / 48.6</td>
</tr>
<tr>
<td>Retrorenal hilar infiltrates</td>
<td>13 / 27.1</td>
<td>21 / 0.5</td>
<td>3 / 15.3</td>
<td>21 / 0.5</td>
</tr>
<tr>
<td>Alveolar or lobe consolidation</td>
<td>16 / 37.5</td>
<td>12 / 0.6</td>
<td>5 / 15.5</td>
<td>27 / 11.4</td>
</tr>
<tr>
<td>Bilateral consolidations</td>
<td>7 / 13.7</td>
<td>4 / 0.7</td>
<td>2 / 15.3</td>
<td>15 / 11.0</td>
</tr>
<tr>
<td>Flail pleurisy</td>
<td>3 / 6.3</td>
<td>3 / 0.5</td>
<td>1 / 6.3</td>
<td>4 / 0.7</td>
</tr>
</tbody>
</table>

NOTE: Data are no. (% of patients). Significant difference was significant. Individual radiographic characteristics were marked as presented by a radiologist.

Esposito et al, CID, 2002

Who needs a CXR?

Outcomes
- 522 children age 2 month or older who met (WHO) clinical def. of severe pneumonia were randomized into CXR and no CXR (control)
- Primary outcome: Time to recovery
- Secondary outcomes:
 - Diagnosis
 - Management
 - Subsequent use of health facilities.

Who needs a CXR?

Results:
- **Primary outcome**
 - No significant difference in time to recovery (p=0.3)
- **Secondary outcomes**
 - CXR - > antibiotics used
 - No CXR - > Dx of bronchiolitis
 - Subsequent use of health facilities was equal

Where is the Pneumonia? – Wrong Time
Where is the Pneumonia? – Wrong Time

Where is the Pneumonia? – Too Fast

Where is the Pneumonia? – Too Fast

Where is the Pneumonia? – Wrong place

The case of the migratory round pneumonia
Where is the Pneumonia? – Wrong place
The case of the migratory round pneumonia

Laboratory findings

WBC

- Likelihood of bacterial infection increases as WBC surpasses 15,000/mm³
 - Shuttleworth, D Amer J Dis Child., 1971
- Occult pneumonias in fever and leukocytosis (20,000/mm³)
 - Pre-PCV7 - 15 - 19%
 - Post-PCV7 - 9%
 - Rustman MS et al, Pediat. Emer. Care, 2009

TEXAS CHILDREN’S HOSPITAL COMMUNITY-ACQUIRED PNEUMONIA (CAP) CLINICAL GUIDELINE

- CXR is not routinely recommended.
- Consider CXR in the setting of moderate or severe pneumonia where the findings are likely to aid in diagnosis or management (suspected abscesses, complicated pneumonias, etc.)

Table 2. Laboratory findings for 100 children with community-acquired pneumonia of various etiologies.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Streptococcus pneumonia (n = 50)</th>
<th>Alignedibacter (n = 50)</th>
<th>Mixed E. pneumoniae and Alignedibacter (n = 50)</th>
<th>Undiagnosed (n = 50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC, count, mean (± SD)</td>
<td>11,980 ± 3,093</td>
<td>11,354 ± 3,634</td>
<td>11,041 ± 4,366</td>
<td>12,980 ± 5,434</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>80 ± 15</td>
<td>79 ± 16</td>
<td>79 ± 16</td>
<td>82 ± 16</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>20 ± 10</td>
<td>20 ± 11</td>
<td>20 ± 11</td>
<td>27 ± 17</td>
</tr>
<tr>
<td>Monocytes</td>
<td>7 ± 3</td>
<td>8 ± 3</td>
<td>7 ± 3</td>
<td>8 ± 3</td>
</tr>
<tr>
<td>Eosinophils</td>
<td>1 ± 1</td>
<td>1 ± 1</td>
<td>1 ± 1</td>
<td>1 ± 2</td>
</tr>
<tr>
<td>Basophils</td>
<td>0.4 ± 0.7</td>
<td>0.1 ± 0.1</td>
<td>0.1 ± 0.1</td>
<td>0.3 ± 0.1</td>
</tr>
<tr>
<td>CRP level, mean (± SD)</td>
<td>198 ± 155</td>
<td>188 ± 119</td>
<td>188 ± 119</td>
<td>136 ± 105</td>
</tr>
<tr>
<td>ESR, mean (± SD)</td>
<td>57 ± 29</td>
<td>57 ± 27</td>
<td>57 ± 27</td>
<td>50 ± 29</td>
</tr>
</tbody>
</table>

NOTE: Data are mean ± SD; < 55, unless otherwise indicated. Unless indicated, difference: p < 0.05; CRP = C-reactive protein; ESR = erythrocyte sedimentation rate

*“Diagnosis not confirmed by clinical and supportive data.”

Esposito et al, CID 2002
CRP
- Several conflicting studies
 - Viral vs. Bacterial CAP
 - Typical vs. Atypical CAP
- Flood et al, PDJJ, 2/2008
 - Meta-analysis of 8 studies
 - 1230 children
 - Pooled incidence of bacterial CAP – 41%
 - CRP concentrations exceeding 4-6 mg/dl has a PPV of 64%

Blood Cultures in CAP
- Outpatient CAP
 - 409 children with radiographic evidence of CAP
 - 2.7% positive
 - No changes in management due to results
- Inpatient CAP
 - Inpatient incidence
 - Juven et al – 1 of 125 (0.8%)
 - Michelow et al – not reported
 - Cevey-Macherei et al
 - Positive - 2 of 99 (2%)
 - False + - 3 of 99 (3%)
 - Tsolia et al – 1 of 75 (1.3%)

Blood Cultures Inpatient CAP
- Adults
 - IDSA/ATS guidelines recommends BCx’ for inpatient CAP
 - Evidence against
 - Systematic review – 13 studies, > 2700 cultures
 - ATBx narrowed < 3%
 - ATBx broadened in less than 1%
 - False positive cultures matched or exceeded the rate for true positives.
 - Clinical decisions were almost never made based on blood culture results

Blood Cultures Inpatient CAP
- TCH Experience
 - Method: Three year retrospective cohort chart review
 - Inclusion
 - Age 2months – 18 years
 - Previously healthy admitted with diagnosis of pneumonia
 - Blood Cx obtained
 - Exclusion
 - Immunocompromised or chronic pulmonary illness with the exception of asthma

Blood Cultures Inpatient CAP
- TCH Experience: Results
 - 134 patients 129 known results:
 - 3 were positive (2.3%, 95% CI 0.5-6.7%)
 - 2 of these were pathogens (1.6%, 95% CI 0.2-5.5%)
 - Management decision:
 - Repeat blood culture in all 3 cases
 - Antibiotics broadened only in the case of the false positive culture
 - Antibiotics were not narrowed in any case

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Missing Cx Result</th>
<th>Positive Cxs</th>
<th>Percent (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lobar</td>
<td>91</td>
<td>1</td>
<td>0 % (0-4%)</td>
</tr>
<tr>
<td>Multilobar</td>
<td>29</td>
<td>2</td>
<td>0 % (0-13%)</td>
</tr>
<tr>
<td>Complicated</td>
<td>14</td>
<td>2</td>
<td>17% (2-48%)</td>
</tr>
</tbody>
</table>

Other Laboratory/Micro tests
- Procalcitonin (PCT)
 - High values (1-2 ng/ml) helpful
 - Low values not predictive in some studies
 - Toikka P et al, PIDJ, 2000
 - Moulin F et al, Arch Dis Child, 2001
- Sputum - children
 - Induced sputum high yield 90%
 - Unable to differentiate LRTI from URI or colonization
 - Laho E et al, Thorax, 2009
Other Laboratory/Micro tests
- Other microbiological testing
 - Pneumococcal urinary antigen detection
 - Real time PCR
 - Serology
- Limitations
 - Costs
 - Clinical utility
 - Mixed infections

Diagnosis - Summary
- There is no gold standard test for the diagnosis of CAP - clinical diagnosis
- Clinical findings can be highly sensitive, but not very specific
- CXR remains the diagnostic test of choice despite its shortcomings in the available evidence
- Laboratory data including microbiological testing is rarely indicated for uncomplicated CAP

Outline
- Background
- Etiology
- Diagnosis
- Management

CAP Management
- Treatment
 - What?
 - Where?
 - How long?
- Follow-up

Treatment – What?
- Antibiotics
- Adjunctive therapies
- Supportive therapy – O₂, IVF
- Factors influencing treatment
 - Etiology
 - Acuity or Severity
 - Complicated vs. uncomplicated
 - Risk factors
 - Immune status
 - Age

Texas Children's Hospital
Community-Acquired Pneumonia (CAP) Clinical Guideline
- Laboratory evaluation is not routinely recommended
- Laboratory test such as WBC should be obtained only when adjunctive information is necessary to help decide whether or not to use antibiotics
- Blood cultures are not routinely recommended in the evaluation of uncomplicated CAP

TCH CAP-Clinical Guideline, 2/2009
Antibiotic Decisions – What?

- Beta-Lactams
 - Amoxicillin
 - Amox/Clav
 - Cephalosporins
- Clindamycin
- Macrolides
- Fluoroquinolones

Antibiotics – What to use

Etiology
- **S. pneumoniae**
 - Penicillin resistance increasing
 - TCH – 60 % resistant
- **Atypical bacteria**
 - Worse outcomes if not treated
 - Principi et al, CID, 2001, Esposito et al, CID, 2002
- **Other bacteria**
 - *H. influenzae*, *M. catarrhalis*

Antibiotics – What to use

H. influenzae, *M. catarrhalis*
- Beta-lactamase producers
- Evidence behind their role in CAP controversial
 - Indirect evidence
 - Usually in mixed infections
 - May be “innocent bystanders” Lahti E et al, Thorax, 2009

Sy MG, et al, Pediatr. Pulm., July 2010
- Comprehensive review of children and *M. Catarrhalis*
- All studies sputum, nas/o/phonaryngeal Cx or serology
- 8 well documented case reports in all of literature
- Extremely uncommon cause

Streptococcus pneumoniae

Is penicillin resistance clinically relevant?
- Resistance is due to alterations in penicillin binding proteins
- Increasing dose overcomes resistance
 - Pigla et al, Ped. Inf. Dis. 2003

S. pneumo discordant therapy

Clinical outcomes in adults

- Multinational prospective study of adults hospitalized with pneumococcal bacteremia
- 844 patients
- Discordant therapy with penicillin or third generation cephalosporins did not affect time to recovery or mortality
- Discordant therapy with cefuroxime
 - 30% higher mortality (p=0.02)

Drug resistance and clinical outcomes - children

 - Multicenter retrospective study of invasive infections caused by *S. pneumoniae*
 - 2100 children
 - No difference in outcome due to antibiotic resistance
 - MIC up to 2.0 microg/ml (interm. resistance)
TEXAS CHILDREN'S HOSPITAL COMMUNITY-ACQUIRED PNEUMONIA (CAP) CLINICAL GUIDELINE

Outpatient
- Children < 2 years of age
 - High dose amoxicillin (80-90 mg/kg/dose div. Q 8-12 hours)
- Children > 2 to 5 years
 - High dose amoxicillin +/- azithromycin (10 mg/kg once day one, 5 mg/kg days 2-5)
 - Could start with one antibiotic and add the second one if no clinical improvement in 24-48 hour follow-up
- Children > 5 years
 - High dose amoxicillin + azithromycin

TCH CAP-Clinical Guideline, 2/2009

Management – adjunctive therapy

Chest physiotherapy in CAP
- No effect on clinical resolution
- No decrease in LOS
- Increased duration of cough and auscultatory findings
 - Paluda C et al, Thorax. 2008 Sep
- Increased duration of fever
 - Britton S et al, BMJ. 1985

Surgical therapy

Complicated pneumonias
- Video assisted thoracoscopic surgery (VATS) versus chest tube only
 - VATS reduces LOS, charges, time of chest tube, complication rate and need for re-intervention
 - Kurt et al, Pediatrics 2004
 - Aronsen et al, PEDI 2005
 - VATS vs. fibrinolytics – prospective studies
 - Same clinical outcome
 - Chest tube + fibrinolytics reduces costs

Antibiotics - How Long?
- Depends on severity
- Non-severe/uncomplicated
 - 10 days pneumococcus
 - 5 days atypical CAP - Azithromycin
- TCH-CAP Guidelines
 - 3-5 day course of high dose amoxicillin
 - Argued J, BMJ. 2004
 - Hoir. Lancet, 2002
- Severe/complicated
 - Should be individualized
 - Most antibiotics 14 – 21 days
Treatment - Where?
- Equal efficacy PO vs. IV even in WHO severe pneumonias

TCH-CAP CLINICAL GUIDELINE
- Admission Criteria
 • Unable to tolerate oral fluids and medications
 • Moderate or severe respiratory distress
 • Failed outpatient antibiotic treatment
 • Altered mental status
 • Oxygen saturation consistently < 90 %
 • Unsafe to send home/poor follow-up

Management
Follow up
- 48 hours — TCH-CAP Guidelines
 • Follow up labs – not needed
 • Follow up CXR
 - Not needed if fully recovered

Conclusions
- CAP is a significant cause of morbidity and mortality in children nationally and world wide
- The etiology is extensive but S. pneumoniae continues to be the major bacterial player followed closely by atypical pathogens
- Diagnosis remains primarily a clinical endeavor
- Imaging studies such as CXR and laboratory testing are of unproven benefit and not routinely indicated in the evaluation of uncomplicated CAP

Future Considerations
- Effects of vaccination with PCV
 • Less systemic/invasive complications
 • Increasing local complications - Empyema
 - Lee et al, Pediatrics, 2010
 - Grijalva et al, Clin. Inf. Disease, 2010
 - Li ST et al, Pediatrics, 2010
- Emergence of multidrug resistant strains
 S. pneumoniae (serotype 19A)
- Development of national guidelines

Thank you