Pediatric Electrophysiology

David M Bush, MD, PhD
Assistant Professor of Pediatrics
Children’s Heart Network
University of Texas Health Science Center San Antonio

On Discovery…

“What is wanted is not the will to believe, but the will to find out, which is the exact opposite.”

Bertrand Russell
1872-1970

Electrophysiology…

Strange Recordings
www.starklab.siu.edu

Electrophysiology…

Strange Labs
www.starklab.siu.edu
Where We Are Going…

- Clinical Electrophysiology
 - Wide Complex Tachycardia in Pediatrics
- Interventional Electrophysiology
 - Evaluating SVT Mechanisms
- Diagnostic Procedures
 - Post-Operative Atrial Electrograms
- Device-Based Therapies
 - Basics of Pacemakers

Management of Wide QRS Tachycardias

What is the most appropriate therapy?

Wide QRS Tachycardias

Why adenosine for ventricular tachycardia?
Management of Wide QRS Tachycardias

- aberrantly-conducted orthodromic re-entrant tachycardia
- orthodromic re-entrant tachycardia with bundle branch block
- focal atrial tachycardia with aberrant conduction
- multifocal atrial tachycardia with aberrant conduction
- antidromic re-entrant supraventricular tachycardia
- atrial fibrillation with pre-excited tachycardia
- ventricular tachycardia

70% of all wide QRS tachycardias are supraventricular in origin

Aberrantly Conducted SVT

Tachycardia Cycle Length (Wide QRS) = 280msec (214 bpm)
Tachycardia Cycle Length (Narrow QRS) = 240msec (250 bpm)

So what does this mean?

Aberrant Conduction

Antidromic SVT
Antidromic SVT

- Requires the presence of pre-excitation (WPW) on the resting ECG
- ECG during SVT may be indistinguishable from VT
- Management of antidromic SVT is identical to that of other form of SVT

Outflow Tract Ventricular Tachycardia

Outflow Tract VT

What is Supraventricular Tachycardia?

Sinus Tachycardia vs SVT

- Probable sinus tachycardia
 - Compatible history consistent with known cause
 - P waves present/normal
 - Variable R-R; constant PR
 - Infants: rate usually <200/min
 - Children: rate usually <180/min

- Probable supraventricular tachycardia
 - Compatible history (e.g., non-specific, history of abrupt rate changes)
 - P waves absent/abnormal
 - HR not variable
 - Infants: rate usually >220/min
 - Children: rate usually >180/min
What is Supraventricular Tachycardia?

Decoding SVT

Left Anterior Oblique View

Right Anterior Oblique View

Decoding SVT

AV Re-Entry Tachycardia

AV Node Re-Entry Tachycardia

Why Are Mechanisms Important?

• Direct therapy
 • Proper selection of site for ablation
 • Some influence of the choice of medication

• Provide Prognosis
 • Likelihood of medical and procedural success
 • Likelihood of spontaneous resolution
The ICU Challenge

- 2 month old female
- 8 hours post-OP repair of double outlet right ventricle with aortic arch reconstruction
- Increasing tachycardia & hypotension with poor perfusion

What is the diagnosis?
What is the most appropriate therapy?

Surmounting the Challenge

Atrial Rate > Ventricular Rate = Variable AV Block
Atrial Rate < Ventricular Rate = Junctional/Ventricular Rhythm

Alternative Approach
Transesophageal Electrogram

CARDIAC DEVICE-BASED THERAPIES
Too Slow or Too Fast

Pacemakers
Implanted Defibrillators
Anti-tachycardia Devices
Transvenous
Epicardial

Arrhythmia Detection

Useful in pediatrics as much for what they “rule out” as they “rule in”

Decoding Pacing for Pediatricians

Things you need to know:
• Why does the patient have a pacer/ICD?
• Is the patient dependent on the pacemaker?
• What is the mode of pacing/ICD?
• What are the rate limits?
• Are the performing remote monitoring?
• What will the device do if there is a problem?

Decoding Pacing for Pediatricians

Pacing Modes:
• Sick sinus syndrome, sinus bradycardia
 • AAI (rarely VVI)
• Heart Block
 • DDD, VVI

Decoding the Pacing Mode:

A A I
Paced Chamber Sensed Chamber Response to Sensed Activity

Decoding Pacing for Pediatricians

Common Settings Examples:
• Patient has a single ventricle and is status post a Fontan procedure. Also has "sick sinus syndrome" but is not pacemaker-dependent:
 • Single-chamber epicardial system
 • Programming: AAI @ 70 ppm
• Patient has congenital complete heart block and has undergone a pacemaker implantation because of syncope:
 • Dual-chamber transvenous system
 • Programming: DDD @ 80-200 ppm
Decoding Pacing for Pediatricians

Things you need to know:
• Why does the patient have a pacer/ICD?
• Is the patient dependent on the pacemaker?
• What is the mode of pacing/ICD?
• What are the rate limits?
• Are the performing remote monitoring?
• What will the device do if there is a problem?

Decoding Pacing for Pediatricians

Example of Malfunction:

DDD 60-180

Decoding Pacing for Pediatricians

Remote Monitoring:

www.medtronic.com
www.stjudemedical.com

Decoding Pacing for Pediatricians

CONCLUDING THOUGHTS

Key Points…
• All wide complex tachycardias in pediatrics are not ventricular tachycardia (though they should be respected as such)
 – Remember your PALS algorithm
• Understanding the type of SVT often requires an invasive EP study
 – Mechanisms can help direct therapy

Key Points…
• Bedside electrocardiograms can help to better understand the mechanism of tachycardia in patients who are poor candidates for formal invasive studies
• Pacemakers are the most common implanted cardiac device (used for slow heart rates in children due to sinus node dysfunction or AV block); other devices can diagnose and/or treat tachyarrhythmias.
Final Thoughts…

“The voyage of discovery is not in seeking new landscapes but in having new eyes.”

Marcel Proust 1871-1922