The Tell-tale Heart: Late Effects in Pediatric Cancer Survivors

Department of Pediatrics Grand Rounds
September 21, 2012

Gregory J. Aune, MD, PhD
Greehey Children’s Cancer Research Institute
University of Texas Health Science Center San Antonio

Disclosure

• I have no financial conflicts of interest to disclose

Learning Objectives

• Identify the common severe late effects seen in long-term survivors of pediatric cancer
• Review the literature regarding cardiac disease in survivors and list currently available strategies for prevention

September is

Childhood Cancer Awareness Month

Learning Objectives

• With respect to the heart, review the known cell-specific molecular events induced by the well-recognized cardiotoxic chemotherapy agents
• Recognize the urgent need to develop laboratory models to investigate the underlying molecular mechanisms mediating chemotherapy and radiation-induced cardiotoxicity

Overall Objectives

• Recognize late effects as an increasingly important consideration in pediatric oncology
• Understand that our knowledge regarding late effects is largely observational; there is an urgent need for basic science efforts focused on understanding the molecular mechanisms of both acute and late toxicities
Childhood Cancer Incidence
- Approximately 15,000 new patients each year in the United States
- Most common cancers are leukemia followed closely by brain tumors

Survival by Year

Survival by Cancer Type

So where does that leave us?
- 5 year survival rates for all newly diagnosed patients > 75%
 - all pediatric cancers and all-comers
- In 2010, there were an estimated 325,000 long-term survivors of pediatric cancer in the U.S. (In Texas: 30,000)
- 1 in 500 young adults are cancer survivors

Toxicity

Acute Toxicity
- Well known and recognized by providers and lay persons
- Nausea, vomiting, hair loss, and bone marrow suppression
- Radiation pneumonitis and skin burns
Late Toxicity

• Less obvious to medical providers and lay persons
• Affect virtually every organ system
• Recognition of the severity and scope is largely the product of epidemiological research conducted in the 21st century

Childhood Cancer Survivor Study (CCSS)

• Funded by National Cancer Institute in 1994
• Self-report questionnaire sent to 20,720 pediatric cancer survivors and 6,000 matched sibling controls
• Patient had cancer diagnosis between the years 1970-1986
• An enormous amount of observational data regarding late effects has been published

Limitations of the CCSS

• Self reported data and much of it has not been validated
• Not the most ethnically diverse population -- mostly Caucasian
• Importantly for San Antonio and South Texas survivors, the cohort studied lacks Hispanics

CCSS Literature

Life-threatening and Debilitating Late Effects

• 2/3 experience at least one late effect
• 1/4 experience a severe late effect, that may be life threatening

Chronic Health Conditions in Adult Survivors of Childhood Cancer
Learning Objective #1

Identify the common severe late effects seen in long-term survivors of pediatric cancer

Affected Organ Systems

- CNS – cognitive, psych, motor
- Endocrine – growth, fertility
- Skeletal – growth, ortho problems
- Cardiac
- Pulmonary
- Second cancers

Pulmonary

- Pulmonary fibrosis
- bleomycin, chest XRT

Endocrine

- Obesity
- Diabetes- total body XRT or abdomen + chest XRT
- Growth problems- cranial XRT
- Ovarian failure- SCT or XRT to abdomen
- Hypothyroidism- XRT to neck
- Infertility
- Decrease bone mineral density

Secondary Malignancies

- Risk of second tumor is higher than non-treated at all time points post treatment
- Skin cancers (non-melanoma) are particularly common
- Related to both specific chemotherapy agents and sites of radiation

Cause-Specific Late Mortality Among 5-Year Survivors of Childhood Cancer: The Childhood Cancer Survivor Study

- Cause of death obtained for 2,534 5-year survivors of pediatric cancer
- Overall standardized mortality ratio (SMR) was 8.4 (CI 8.0-8.7)
- Cause-specific SMR increased for:
 - Secondary malignancies
 - cardiac
 - pulmonary
 - other medical causes
Case Example

• 35 yo male treated for Hodgkin’s disease 18 years previously presents to cardiology with worsening SOB over a 6 month period. Prior treatment included chest XRT and 300 mg/m² of anthracyclines. Known history of progressive calcifications of the aortic valve. ECHO evaluation significant for critical aortic stenosis. Preoperative card cath reveals 3 coronary arteries with >95% occlusion. Patient is taken to surgery one week later for aortic valve replacement and 3-vessel CABG.

Learning Objective #2

Review the literature regarding cardiac disease in survivors and list currently available strategies for prevention.

Cardiovascular Late Effects

• Valvular heart disease- chest XRT
• Cardiomyopathy- anthracyclines (doxorubicin, daunorubicin, mitoxantrone)
• Coronary artery disease- XRT, anthracyclines
• Heart attack
• Sudden cardiac death
• Stroke- neck XRT

Cardiovascular Disease

• Numerous studies have documented excess cardiovascular disease risk in survivors of pediatric cancer
• Survivors are 5-10 times more likely than sibling controls to have heart disease
• SMR for cardiac death is 7-8.2 times higher in cancer survivors
• Full extent of the problem may not be realized due to relative young age of the existing survivor cohort
• The rate of CHF is 10% in patients treated with anthracyclines
Prevention of Cardiac Disease

- Decrease cumulative anthracycline dose
- Cardioprotectants
- Modes of administration and delivery
- Targeted evaluation by ECHO
- Promotion of healthy lifestyles

Limiting Cumulative Dose

Mode of administration and Pharmaceutical Preparations

- Proposed reduction in cardiotoxicity by giving anthracyclines as a continuous infusion vs. bolus dosing
 - peak serum dose less resulting in less cardiotoxicity
- Liposomal anthracycline preparations promoted by pharmaceutical industry as less cardiotoxic

Liposomal Preparations

- Some studies in adult breast cancer patients indicate reduced cardiotoxicity
- Expensive
- Have not been utilized or systematically studied in the pediatric population

Cardioprotective Therapeutics

- Only approved medication for prevention of acute anthracycline-induced cardiotoxicity is the iron-chelator dextrazoxane (Zinecard)
- In numerous studies has been shown to decrease elevation of troponins during anthracycline infusion and abrogate dysfunction measured by ECHO
- Widespread use has not materialized due to concerns about decreasing overall survival and increased rates of secondary leukemia in some clinical studies
• 491 patients with standard and high-risk ALL
• Randomized to two groups
 – standard anthracycline containing therapy
 – Standard plus dexrazoxane
• Median follow-up of 5.7 years
• 5 year EFS was 82%
• Dexrazoxane had no significant impact on EFS

The low incidence of secondary acute myelogenous leukemia in children and adolescents treated with dexrazoxane for acute lymphoblastic leukemia: A report from the Dana–Farber Cancer Institute ALL Consortium

• 553 patients treated on DFCI ALL consortium trials and received dexrazoxane
• 1 secondary leukemia
• Secondary leukemia is a rare event

Screening for Cardiovascular Disease in Survivors

• Evidence-based guidelines recommend yearly ECHO evaluation for children exposed at ages <5 or if cumulative dose is >300 mg/m2
• Main assessment is ejection fraction
 ★ EF less than 50% considered worrisome
 ★ 50-55% borderline
 ★ Other imaging methods may be better
Screening Adult Survivors of Childhood Cancer for Cardiomyopathy: Comparison of Echocardiography and Cardiac Magnetic Resonance Imaging

- 108 survivors with no history of cardiotoxicity (ages 22-53)
- EF calculated from Cardiac MRI detected 14% of population with an EF less than 50%
- ECHO overestimated mean EF by 5%
- ECHO had a false negative rate of 75%
- 12 survivors had EF less than 50% by CMR, but were misclassified by ECHO as normal

Limitations in Current Screening Methods

- A large number of patients with EF measurement considered normal have significant disease
- Newer Screening methods such as Cardiac MRI or Echocardiographic strain imaging may be more sensitive

Healthy Lifestyle

- Healthy Lifestyle

Summary of Prevention

- There are numerous ongoing efforts to utilize cardioprotectants, develop preventive strategies, and improve identification of at-risk survivors
- However, a greater understanding of the underlying molecular mechanisms and clinical pathogenesis is needed to move this effort forward

Learning Objective #3

With respect to the heart, review the known cell-specific molecular events induced by the well-recognized cardiotoxic chemotherapy agents
Cell Specific Effects in Myocardium

- Myocardial tissue is composed of many cell types
 - myocytes
 - fibroblasts
 - conducting cells
 - infiltrating immune cells

Myocyte Injury Mechanisms

Injury Mechanisms in Other Cell Types

- Largely overlooked
- Our current understanding of events in the myocyte do not fully explain clinical observations
- Mechanism of myocardial injury is likely complex and involves interactions between all cell types and support structures in the heart, including extracellular matrix

Learning Objective #4

Recognize the urgent need to develop laboratory models to investigate the underlying molecular mechanisms mediating chemotherapy and radiation-induced cardiotoxicity

Need for Research

- Clinical research needed to identify patients most at risk and develop better screening methods
- Laboratory models needed to understand molecular mechanisms, identify biomarkers, and develop therapeutics

Laboratory Models

- Needed to elucidate the basic science of myocardial injury
 - must account for all cell types
 - must include the ability to study both acute injury and recovery from injury (latent period)
 - Goal should focus on the identification of biomarkers and molecular targets that will enable development of therapeutics
 - novel cardioprotectants
 - therapeutics that slow pathologic progression to cardiomyopathy and CHF
Pediatric Mouse Model for Anthracycline-induced Cardiotoxicity

A Mouse Model for Juvenile Doxorubicin-Induced Cardiac Dysfunction

Output Measurements

- Collagen deposition and fibrosis
- Function (small animal ECHO)
- Tissue acquisition from control and doxorubicin-treated animals for:
 - miRNA profiling and candidate pathway prediction
 - analysis of ECM protein and mRNA expression
- All measurements can be applied to animals during acute exposure AND recovery from treatment

Summary

- Long-term survivors of pediatric cancer patient are a growing population that faces an array of severe medical problems
- Cardiac disease is a leading cause of early mortality in this population
- Anthracyclines are clearly associated with the development of cardiomyopathy and CHF

Acknowledgements

Primary Research Mentor
Merry Lindsey

Lab Personnel
Thomas Andrews
Fomestine Dickson
Jonathan Lam
Mackenzie Welborn

CTSA/KL2
Pedro Delgado
Michael Lichtenstein
Linda McManus

Mentoring Committee
Gail Sommison
Richard Lange
Alex Petersmids
John Gelfond
John Mulvihill

Department of Pediatrics
Division of Hematology-Oncology

Peer Mentor
Andrew Meyer