Management of Burn Wounds

Lillian F. Liao, MD, MPH
Division of Trauma and Emergency Surgery
Department of Surgery
UTHSCSA

Management of Burn Wounds

• History of Burn Care
• Pathophysiology of Burn
• Acute burn care resuscitation
• Acute burn wound care

History of burn care

• Ebers papyrus: 1500 B.C.
 – Describes a 5 day treatment regimen
 • Mixture of cattle dung, bees wax, ram’s horn, barley porridge soaked in resin dressing and black mud was “just want the doctor ordered” for burn wound

History of burn care

• Hippocrates: 500 B.C.
 – Advised the application of melted skin of swine mixed with a resin of bitumen

History of burn care

• Hong Ge – AD 300
 – Described burn as an external disease
 – Treatment of topical ointment to reduce wound infection:
 • old calcarea blended with plant oil
 • pig fat cooked with willow bark

History of burn care

• Roman Empire: mid-16th Century
 – Paracelsus, a botanist
 • Use salve of fat from wild hogs and bears soaked in red wine, with roasted earthworms, and moss that grew on the skull of a dead man
• Renaissance physicians
 – Applied boiling hot oil for acute management of burn wounds
History of burn care

• Fabricius Hildanus – 15th century German physician
 – Classify burns into 3 degrees

• Dupuytren – 19th century French surgeon
 – “Burns had been the object of one of the most bizarre treatment methods.”

History of burn care

• WWII – Consensus reached
 – Best management of deep burn wounds include:
 • excision
 • skin transplantation
 • pain management

History of burn care

• 1950’s [Korean War]
 – Establishment of the ISR at BAMC
 – Skin graft for management of burns >30% TBSA
 – Burn mortality has decreased as a result of:
 • Early excision and grafting
 • Control of sepsis
 • Advances in ventilator management
 • Advances in nutritional support
 • Wound care adjuncts

Pathophysiology of burn

SKIN
 – Largest organ in the body
 – Barrier
 • External: pathogens
 • Internal: prevents loss of water, protein, electrolytes
 – Burns
 • 40-50,000 admission per year in the US
 • 80% of these are candidates for outpatient treatment

Pathophysiology of burn

Extent of Burn injury
 – Zones of tissue damage

Pathophysiology of burn

Zones of Injury
 – Zone of Coagulation
 • Irreversibly damaged tissue
Pathophysiology of burn

Zones of Injury
- Zone of Coagulation
- Zone of Stasis
 - Moderately injured tissue
 - Vasoconstriction
 - Tenuous zone
 - Necrosis vs. viability depends on resuscitation

Pathophysiology of burn

Zones of Injury
- Zone of Coagulation
- Zone of Stasis
- Zone of Hyperemia
 - Viable but inflamed tissue

Pathophysiology of burn

First degree burn
- Equivalent to sunburns
- Thermal injury limited to the epidermis
- All dermal appendages are intact
- Skin:
 - Erythematous
 - Painful
 - Blanches with touch, no blistering

Pathophysiology of burn

First degree burn
- Treatment
 - Moisture cream
 - NSAIDS/Tylenol for pain
- Prognosis
 - Skin regeneration within a few days
 - Damaged epidermal layer desiccates and sloughs off
Pathophysiology of burn

Second degree burn
- Thermal injury of the epidermis and dermis
- Two classifications
 - Superficial
 - Deep
- Depth of injury is important for treatment and prognosis

Pathophysiology of burn

Superficial partial thickness burn
- Characteristics
 - Erythematous
 - Moist
 - Blanches with touch
 - Blisters
 - PAINFUL
 - Intact dermal appendages
 - Intact sensory nerve endings

Pathophysiology of burn

Superficial partial thickness burns
- Zone of injury can extend to the area of stasis
 - Resuscitation with fluids
 - Wound care
 - Moist antimicrobial environment
 - Re-epithelialization [14 days]
 - Rete ridges
 - Hair follicles
 - Sweat glands
Pathophysiology of burn

Superficial partial thickness burns
- Discoloration
- Scarring

Deep partial thickness burns
- Extends to the deep dermal layer
- "Spontaneous healing" possible
- Problems:
 - Higher rate of conversion to full thickness burns
 - Develop infection
 - Form contracture

Deep partial thickness burns with conversion
Pathophysiology of burn

Full thickness burns [3rd degree]
- Spontaneous healing
 - Wound contracture from non-burned edges
- Mainstay of therapy
 - Early excision and grafting

Pathophysiology of burn

- Full thickness burns [3rd degree]
 - Epidermal and dermal destruction
 - Needs early excision and grafting
 - Skin
 - Insensate
 - Leathery
 - Dry
 - No tissue edema
Pathophysiology of burn

Circumferential burns
- Burn wound involves the entire
 - Chest wall
 - Arm/leg
 - Abdomen
- Tissue edema develops under constrictive skin
 - Decrease perfusion
 - Increasing pressure + ischemia → limb loss

Pathophysiology of burn

Circumferential burns: Compartment syndrome
- Thorax
 - Increasing peak airway pressures
 - Decrease chest wall compliance
 - Inability to ventilate and oxygenate
 - Rx: escharotomy

Pathophysiology of burn

Circumferential burns: Compartment syndrome
- Extremities
 - Pain out of proportion with injury
 - Parenthesis
 - Paralysis
 - Pale extremities
 - Pulse-less exam
Epidemiology

- **MOST COMMON out-patient burns**
 - Non-intentional scalding burn
 - Most are preventable [woman and children]
 - Between 1985-2009: mortality decreases over time
 - Burn size and age are most important determinants

- **Socioeconomics**
 - Admission for burns increase with decreasing socioeconomic status
 - Highest risk are children in households without a separate kitchen, kitchen without doors, or uses kerosene lamps

Acute burn resuscitation

Four periods of treatment

- **Emergent**
 - Field triage
 - Begin resuscitation
 - Transport to definitive care

- **Acute**
 - Resuscitation
 - Determine burn depth after initial debridement
 - Coverage plan
 - Pain control
 - Nutrition

- **Chronic**
 - Wound care
 - Physical therapy

- **Rehabilitation**
 - Physical therapy
 - Psychosocial management

Acute burn resuscitation

- **Airway**
- **Breathing**
- **Circulation**
- **Disability**
- **Exposure**

Burn Assessment

- How the burn occurred
- Size and depth of burn
- TBSA
- Mechanism of injury
 - Is the burn >15% TBSA partial thickness?
 - Fluid resuscitation should begin
 - Go to a burn center
Acute burn resuscitation

Accurate assessment of % TBSA

- Needs LR resuscitation if >15% TBSA partial thickness burn
 - Parkland formula: \([4 \text{ml}] \times [\text{Kg}] \times [\%\text{TBSA}]\)
 - Brooke’s: \([2 \text{ml}] \times [\text{Kg}] \times [\%\text{TBSA}]\)
 - Replace ½ over first 8 hours
 - Starts from the time of injury
 - Next ½ over the next 16 hours

Fluid resuscitation

- Resuscitation goals:
 - HR [normal range for age]
 - UOP 0.5 to 1 ml/kg/hr
 - Temp > 37F

The first 24-48 hours

- Extent of injury may not be clear
 - Inadequate fluid resuscitation may hinder healing
 - Acute infection will delay healing

Criteria for transport to Burn center

- Partial thickness burn >10% TBSA
- Face, hands, feet, genitalia, major joints
- Full thickness burn of any age
- Electrical burns
- Chemical burns
- Inhalation injury

- Patient with multiple pre-existing medical problems + burn of any size
- Burn + Trauma
- Burn + Child
- Burn + Elderly
- Burn in patients with special needs
Acute burn wound care

Access the depth of the burn

SKIN LAYERS
- Epidermis
- Dermis
- Subcutaneous fat
- Muscle
- Nerve ending
- Hair follicle
- Sweat gland

BURN DEPTHS
- First Degree
- Second Degree
- Partial
- Deep
- Third Degree

Acute burn wound care

Cover the clean wound in bacitracin and telfa

Acute burn wound care

Acute burn wound care

Acute burn wound care

Acute burn wound care

Acute burn wound care
Acute burn wound care

Is this a wound that will require operative management?

YES
Full thickness burns

Don’t know

NO
First degree burns

Acute burn wound care

• Pigment management

• Risk of hypertrophic scarring
 – Healing time
 • 14-21 days: ~30% risk
 • >21 days: ~70%

• Pain management

Chronic burn wound care

• Occupational therapy

• Physical therapy

• Hypertrophic scar management

• Psychosocial trauma

Questions?

References

• ABLS
• Trauma. Mattos et al. 5th edition.
• Cuttle et al. The optimal duration and delay of first aid treatment for deep partial thickness burn injuries. Burns 2010; 36(3) 389-96.
• Mistry et al. Socioeconomic deprivation and burns. Burns 2010; 36(3):403-8