Diagnosis and Management of Acute Kidney Injury in Children

Daniel Ranch, MD
Assistant Professor
UTHSCSA Dept. of Pediatrics
Division of Pediatric Nephrology

Disclosure
Select either a or b and make applicable to your situation.
a. I have no relationships with commercial companies to disclose.

Learning Objectives
At the end of this presentation the participant will be able to:
1. Correctly recognize and diagnose common causes of AKI in children.
2. Recognize common complications of AKI in children.

Presentation Outline
• Normal renal development and glomerular function.
• Definition and epidemiology of acute kidney injury (AKI).
• Pathophysiologic mechanisms in AKI.
• Diagnosis and management of AKI.
• Morbidity and mortality of AKI.
• Future AKI research.

Human Kidney Development
- The metanephros is the direct precursor of the adult kidney.
 - Mesenchyme
 • Glomerulus
 • Proximal tubule
 • Loop of Henle
 - Ureteric Bud
 • Ureter
 • Collecting ducts

Kadioglu, Am J Rad 2010

Human Kidney Development
- Nephrogenesis is complete by 36 weeks’ gestation in humans.
- Humans have between 0.7-1 x 10^6 glomeruli in each kidney.
- Combined adult kidney weight is ~300gm (0.5% of body weight).

Avner, Pediatric Nephrology, 6th Edition
Development of Renal Blood Flow and Glomerular Filtration

- Fetal RBF is only 3-7% of cardiac output.
- Postnatal RBF doubles by 2 weeks after birth.
- By 2 years of age, RBF reaches mature levels (~20% of cardiac output).

Rubin, JCI 1949

Normal GFR:
- E.g. 70kg adult
- Blood volume ~ 5L
- Cardiac output ~ 5L/min
- RBF ~20% of 5L/min
- ~1L/min

Renal plasma flow:
- RBF*(1-Hct)
 - 1L/min*(1-40%) ~ 0.6L/min

Filtration fraction
- ~20% * 600mL/min
- GFR ~ 120mL/min

Kidneyatlas.org

Estimation of GFR

- Ideal GFR marker
 - Freely filtered by the glomerulus.
 - Not secreted or reabsorbed by the tubules.
 - Not metabolized by the kidney.

- Inulin – “gold standard”
 - Not useful in clinical settings:
 - Difficult to obtain and prepare.
 - Requires a continuous infusion.
 - Measurement methods are not routinely available.

• GFR ~ clearance of inulin
 - \(C_{\text{In}} = \frac{(U_{\text{In}} \times V)}{P_{\text{In}}} \)

Creatinine as a Marker of GFR

- Creatinine
 - Normal product of muscle breakdown.
 - Relatively constant daily production rate.
 - Production is a function of muscle mass:
 - ~50 mg Cr from 1 kg muscle
 - Boys: 15-20 mg/kg/day
 - Girls: 10-15 mg/kg/day

Wyss, Phys Rev 2000

Formula to Estimate GFR in Children

- Schwartz formula
 - GFR ~ Cr clearance
 - \(\text{GFR} = \frac{k \times \text{Height (cm)} \times \text{S}_{\text{Cr}} \text{ (mg/dl)}}{\text{Age}} \)
 - \(k \) values:
 - < 1 year: 0.45
 - 1-12 yrs: 0.55
 - >12 yrs, F: 0.55
 - >12 yrs, M: 0.7
 - GFR adjusted for body surface area, so units are ml/min/1.73m²

Schwartz, Ped 1976

Formulas to Estimate GFR in Adults

- Cockcroft-Gault:
 - (140 – age) × body weight/plasma creatinine × 72
 - (× 0.85 if female)

- Modified Diet in Renal Disease:
 - 175 × plasma creatinine
 -1.154 × age
 -0.203 (× 0.742 if female; × 1.21 if black)

- CKD-EPI:
 - for men with a plasma creatinine ≤0.9 :
 - (plasma creatinine/0.9)^(-1.154 × age-1.203) × 0.742
 - for women:
 - (plasma creatinine/0.9)^(-1.154 × age-1.203) × 1.21
 - for black men:
 - (plasma creatinine/0.9)^(-1.154 × age-1.203) × 1.63
 - for white or other:
 - (plasma creatinine/0.9)^(-1.154 × age-1.203) × 1.41

Michels, CJASN 2010
Normal Creatinine Values in Children

Acute Kidney Injury
- Definition
- Epidemiology
- Pathophysiology

Definition of AKI
- Abrupt decrease in glomerular filtration rate.
- Consensus on a clear clinical definition is still lacking.
 - To increase sensitivity of the diagnosis of AKI.
 - To improve epidemiologic data.
 - To predict outcomes of AKI.

Epidemiology of AKI
- Adult data:
 - Uchino, JAMA 2005
 - Prospective observational study of 29,269 adult ICU patients.
 - Period prevalence for severe acute renal failure was 5.7%.
 - 72.5% of severe renal failure required dialysis.
 - Mortality was 60.3%.
 - Risk factors for worse outcomes:
 - Vasopressor use, mech. Ventilation, sepsis, cardiogenic/septic shock, hepatorenal syndrome

Pediatric RIFLE Criteria
- Acute Dialysis Quality Initiative developed the RIFLE criteria in 2002
 - To standardize the definition of AKI.
 - Based on changes in creatinine clearance and urine output.
 - Modified for pediatric use (pRIFLE)

Epidemiology of AKI in Children

<table>
<thead>
<tr>
<th>Table 1: Pediatric-modified RIFLE (pRIFLE) criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
</tr>
<tr>
<td>GFR 125 mL/min/1.73 m²</td>
</tr>
<tr>
<td>GFR 50-125 mL/min/1.73 m²</td>
</tr>
<tr>
<td>GFR 10-49 mL/min/1.73 m²</td>
</tr>
<tr>
<td>GFR 0-10 mL/min/1.73 m²</td>
</tr>
</tbody>
</table>

Hsu, Ped Neph 2010
Pathophysiology of AKI

Pre-renal AKI
- The most common cause of AKI.
- Due to inadequate intravascular volume.
 - GI fluid loss
 - Vomiting, diarrhea, NG suction
 - Blood loss
 - Surgery, trauma, GI bleeding
 - Insensible fluid loss
 - Burns, hyperthermia

- Renal losses
 - Diuresis, diabetes insipidus, salt wasting nephropathy
- Decreased effective intravascular volume
 - Nephrotic syndrome, sepsis, heart failure, liver failure

Intrinsic AKI
- Ischemic ATN
 - Severe volume/blood loss
- Toxic ATN
 - Drugs (aminoglycosides, NSAIDs, IV contrast, cisplatin, ifosfamide)
 - Exogenous toxins
 - Ethylene glycol, methanol, heavy metals, toxic mushrooms
- Endogenous toxins
 - Myoglobin, hemoglobin, uric acid

Diagnostic Approach to AKI
- Pre-renal
 - Decreased intravascular volume
 - Decreased effective intravascular volume
- Intrinsic
 - Ischemic acute tubular necrosis (ATN)
 - Toxic ATN
 - Glomerulonephritis
 - Interstitial nephritis
 - Vascular lesions
 - Infection
- Post-renal
 - Ureteral obstruction
 - Urethral obstruction

Acute Kidney Injury
- Diagnosis
- Management
Post-Renal AKI
- Ureteral obstruction
 - Ureteropelvic junction obstruction
 - Ureterovesical junction obstruction
 - Urolithiasis
- Urethral obstruction
 - Posterior urethral valve
- Extrinsic mass compression (i.e. tumor, hematoma, abscess)

Clinical Evaluation of AKI
- **History:**
 - Decreased urine output
 - Volume loss
 - Vomiting, diarrhea
 - Respiratory symptoms
 - Dyspnea, hemoptysis
 - Cardiac disease
 - Fever
 - Abdominal pain, dysuria
 - Hematuria
 - Swelling
 - Extremities, joints
 - Skin lesions, pallor
 - Trauma, hemorrhage
 - Seizure
 - Medications
 - Chronic kidney disease
- **Physical Exam:**
 - Vital signs
 - Weight change, fever, tachycardia
 - Hypertension, tachypnea
 - Altered mental status
 - Periorbital edema
 - Mucous membranes
 - Dry, pale
 - Oropharyngeal lesions
 - Tonsillitis, oral ulcers
 - Heart and Lung sounds
 - Abdominal exam
 - Asymmetry, mass, tenderness
 - Edema, joint swelling/pain
 - Petechiae, purpura, skin turgor, capillary refill, jaundice

Laboratory Evaluation of AKI
- **Urinalysis**
 - Dysmorphic RBCs, RBC casts
 - Glomerulonephritis
 - WBC casts
 - Pyelonephritis
 - + Blood but no RBCs
 - Rhabdomyolysis, hemolysis
 - Eosinophils
 - Interstitial nephritis
 - Proteinuria
- **Serum biochemistry**
 - Hyponatremia
 - Hyperkalemia
 - Metabolic acidosis
 - Hyperphosphatemia
 - Azotemia
- **Blood cell counts**
 - Leukocytosis
 - Sepsis
 - Anemia
 - Hemolysis
 - Thrombocytopenia
 - HUS, TTP, DIC
- **Serologic testing**
 - Hypocomplementemia
 - PSGN, MPGN, SLE
 - ASO, anti-DNAse B
 - PSGN
 - ANA, anti-dsDNA
 - SLE
 - ANCA
 - Wegener’s, MPA
 - Anti-GBM Ab
 - Goodpasture’s
 - HUS
 - ADAMTS-13

Images courtesy of Kidneyatlas.org.
Radiologic Evaluation of AKI

- Imaging studies
 - Renal ultrasound
 - Determine renal and bladder anatomy
 - Detect obstruction or mass
 - Assess blood flow
 - Dimercaptosuccinic acid (DMSA) scan

| Common Clinical Findings in Different Types of AKI |
|---------------------------------|-----------------|-----------------|
| **Pre-Renal** | **Intrinsic** | **Post-Renal** |
| History | Vomiting, diarrhea | Dehydration | Decreased urine output |
| Dehydration | Ischemic insult | Urinary urgency |
| Hemorrhage | Toxins/medication | Abdominal mass |
| Decreased urine output | Hematuria, Fever, Rash |
| **Physical Exam** | Dry membranes | Hypertension | Hypertension |
| Hypertension | Lack of tears | Edema | Edema |
| Edema | Tachycardia, delayed cap. refill | Respiratory rates | Palpable bladder |
| Respiratory rales | Increased skin turgor | Purpura, petechiae | Palpable mass |

Common Investigative Findings in Different Types of AKI

<table>
<thead>
<tr>
<th>Pre-Renal</th>
<th>Intrinsic</th>
<th>Post-Renal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urinalysis</td>
<td>Dysmorphic RBCs, casts</td>
<td></td>
</tr>
<tr>
<td>Urine Specific Gravity >1.025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine Osmolality >500 mOsm</td>
<td><350 mOsm</td>
<td><350 mOsm</td>
</tr>
<tr>
<td>Urine Na <10 mEq/L</td>
<td>>30 mEq/L</td>
<td>>30 mEq/L</td>
</tr>
<tr>
<td>FENa <1%</td>
<td>>2%</td>
<td>>2%</td>
</tr>
<tr>
<td>FEUrea <35%</td>
<td>>50%</td>
<td>>50%</td>
</tr>
<tr>
<td>Serum BUN-Cr >20:1</td>
<td>10-20:1</td>
<td>10-20:1</td>
</tr>
<tr>
<td>Ultrasound</td>
<td>Empty bladder</td>
<td>Increased echogenicity</td>
</tr>
</tbody>
</table>

General Management of AKI

- Determination of GFR
 - Severity of AKI
 - Drug dosing
- Fluid management
- Electrolyte abnormalities
- Acidosis
- Blood pressure
- Renal replacement therapy

Management of Pre-Renal AKI

- Fluid resuscitation
 - Isotonic fluid
 - Up to 60 ml/kg in 1-2 hrs
 - Reassess for response
 - Pulses
 - Perfusion
 - Mental status
 - Urine output
- Correct the underlying etiology.

Management of Intrinsic AKI

- Estimation of GFR
 - To determine the severity of AKI.
 - To determine the rate of decline/recovery.
 - To determine drug dosing.
- Schwartz equation
 \[k \times \text{Height (cm)} / S_C (\text{mg/dl}) \]
Management of Intrinsic AKI

- Fluid management
 - Determination of the patient’s volume status is crucial.
 - History, weight, blood pressure, physical exam findings.
 - Daily maintenance fluid requirement = UOP + IL
 - Patients with hypervolemia and oliguria/anuria need to be fluid restricted.
 - IL ~ 400 ml/m²/day or ~ 1/3 daily maintenance.

- Diuresis
 - Furosemide (Lasix)
 - Effective as monotherapy, need higher doses with worsened kidney function.
 - Adverse effects: hypokalemia, ototoxicity, contraction alkalosis.
 - Thiazides (Chlorothiazide (Diuril), Hydrochlorothiazide)
 - Can be used as an adjunct to loop diuretics.
 - Minimally effective when GFR <30 ml/min.
 - Adverse effects: hypokalemia, hypercalcemia, hyperuricemia.
 - Metolazone – “thiazide-like” diuretic
 - Several times more potent than thiazides.
 - Dosing: 0.1-0.2 mg/kg/dose PO Q12-24 hours.

- Electrolyte abnormalities
 - Hyperkalemia
 - Increased potassium load
 - Cellular shifts
 - Impaired excretion
 - Symptoms
 - Weakness, paresthesias,
 - Complications
 - Arrhythmias
 - Death
 - Medical Treatment of Hyperkalemia
 - Albuterol
 - 2.5 mg nebulized dose; rapid onset of action
 - Dextrose
 - 25% glucose 2 ml/kg IV + regular insulin 0.1 u/kg; rapid onset of action
 - Calcium gluconate
 - 10% CaGluc 0.5-1 ml/kg IV over 5-10 min; preferably via central line
 - Sodium bicarbonate
 - 1-2 meq/kg IV over 30-60 min
 - Furosemide
 - 1-2 mg/kg IV over 30-60 min
 - Kayexalate
 - 1 gm/kg PO/PR; removes potassium from the body

- Metabolic Acidosis
 - Usually a wide gap acidosis
 - Treatment
 - NaHCO₃ 1-2 meq/kg IV over 30-60 min
 - Complications: hypocalcemia

- Blood pressure
 - Hypotension
 - Replace volume, give pressors
 - Hypertension
 - Severe: >99th + 5mmHg
 - Hypertensive emergency
 - Symptomatic or evidence of end-organ damage
 - Nausea, vomiting, altered mental status, seizure
 - Treatment goal
 - BP reduction by 25% over 8 hours, then normalization (BP < 90°) over next 24-48 hours
Management of Intrinsic AKI

- Medical treatment of severe hypertension
 - Labetalol 0.2-1 mg/kg/dose IV Q6 hours
 - relative contraindication in asthma and overt heart failure
 - Hydralazine 0.2-0.6 mg/kg/dose IV Q4 hours
 - reflex tachycardia
 - Nicardipine 0.5-4 mcg/kg/min IV infusion
 - reflex tachycardia
 - Esmolol 100-500 mcg/kg/min IV infusion
 - bradycardia
 - Sodium Nitroprusside 0.5-10 mcg/kg/min IV infusion
 - monitor cyanide levels, give with sodium thiosulfate

- Imaging
 - Renal ultrasound
 - Increased echogenicity
 - Abnormal vascular flow
 - DMSA

- Renal replacement
 - Indications
 - Acidosis
 - Electrolyte abnormalities
 - Intoxications
 - Overload (fluid)
 - Uremia
 - Advantages
 - Effective for fluid and metabolite removal.
 - Short treatment time.
 - Disadvantages
 - Requires vascular catheter and systemic heparin.
 - Volume/solute shifts may not be tolerated.

- Hemodialysis
 - Continuous therapy.
 - Useful for hemodynamically unstable patients.
 - Requires vascular catheter and anticoagulation.
 - Requires abdominal catheter.
 - Contraindicated with intraabdominal pathology.
 - Requires vascular catheter and anticoagulation.
 - Labor intensive.

- Peritoneal Dialysis
 - Requires abdominal catheter.
 - Contraindicated with intraabdominal pathology.

Renal Replacement Therapy

Management of Post-Renal AKI

- Relief of the obstruction.
- Monitor for post-obstructive diuresis and salt-wasting.

Acute Kidney Injury

- Morbidity and Mortality
- Future Research
Morbidity and Mortality in AKI

- AKI is associated with increased in-hospital morbidity and mortality in adults.
 - In hospitalized adults, a 25% increase in serum Cr -> relative risk of death 1.8; 50% increase -> RR of death 6.9 (Coca, AJKD 2007)
- Paucity of pediatric data in the literature.
- Prospective study of 110 ICU admissions with AKI (Bresolin, PedNeph 2009)
 - 37 deaths (31 from multiorgan failure, 6 from septic shock)
 - Factors that increased the risk of mortality:
 - Oliguria/anuria, dialysis, hypotension, need for pressors, mechanical ventilation, multiorgan failure, lactic acidosis.

Morbidity and Mortality in AKI

- Primary versus secondary etiologies of AKI
 - Survival rates higher with primary renal disease
 - 66.7% vs 52.5% (Hayes, J Crit Care 2009)
 - 90% vs 51% (Foland, Crit Care Med 2004)
 - 81% vs 43% (Bunchman, Ped Neph 2001)

Morbidity and Mortality in AKI

Long Term Outcomes in Pediatric AKI

- Askenazi, Kidney Int 2006
 - 174 pediatric patients with in-hospital AKI and survived to discharge
 - 3-5 year survival after discharge was 79.9%
 - 66.5% of deaths were in the first year after discharge
 - 21% of survivors had at least one sign of persistent renal injury
 - Microalbuminuria, decreased GFR, hypertension, or hyperfiltration
 - 9% developed end stage kidney disease
Future AKI Research

- AKI epidemiologic data
- Earlier markers of AKI
 - Cystatin C
 - Kidney injury molecule-1 (KIM-1)
 - Neutrophil gelatinase-associated lipocalin (NGAL)
- AKI therapies
 - Inhibitors of oxidative stress
 - Stem cell therapy

Cystatin C and KIM-1 Predict AKI in Adult Cardiac Surgery Patients

Urine NGAL Predicts Severe AKI After Pediatric Cardiac Surgery

Future AKI Research

- The incidence and prevalence of AKI in children may be underestimated, and further studies are needed to clearly define AKI and determine its burden.
- Early detection of AKI may be beneficial, and more sensitive biomarkers need to be developed.
- Development of biomarkers to predict those patients who will be at higher risk for AKI may help to decrease its occurrence.
- There are currently no therapies to slow or reverse kidney damage in AKI, and these need to be developed.