Horror Autoinflammaticus: The Expanding Spectrum of Systemic Autoinflammatory Disease

Dan Kastner, MD, PhD
NHGRI/NIH/DHHS
UTHSCSA Pediatrics Grand Rounds
April 29, 2011

The Systemic Autoinflammatory Diseases: What Are They and Why Should You Care?

- Recurring episodes of seemingly unprovoked localized and systemic inflammation, without high titer autoantibodies, antigen-specific T cells, or evidence of infection
- Dramatic evidence of inflammation
- Disorders of innate immunity, providing new insights into human biology

Kastner et al., Cell 140:784-790, 2010.
Samuels et al., Medicine (Baltimore) 77:268, 1998

Positional Cloning of MEFV, the Gene Mutated in Familial Mediterranean Fever (FMF)

Kastner et al., Cell 140:784-790, 2010.
The PYRIN Domain: A Cognate Interaction Motif

PYRIN
CARD
ASC
CASPASE-1
IL-1β

PYRIN

Pro-IL-1β

IL-1β

Converting Enzyme (ICE)

Richards et al., J Biol Chem 276:39320, 2001

Human and Mouse NLR Family Members

Schröder and Tschopp, Cell 140:821, 2010

Ancestral Mutations in FMF

Kastner, Hospital Practice 33:131, 1998

Smallpox: The Selective Pressure?

• Origins in the Nile valley?
• Requires high population density
• 25–30% mortality

FMF Knockin Mice: IL-Dependent Inflammation

WT

V726A

Chae et al., Immunity, in press.

IL-1 Inhibition in FMF Amyloidosis

Chae et al. PNAS 103:9882, 2006
FMF Variant or New Disease?

Periodic fever in the Irish: an allelic variant of FMF in descendants of ship-wrecked sailors from the Spanish Armada?

TNFRSF1A Mutations Can Cause Dominantly Inherited Periodic Fever

The TNF Receptor-Associated Periodic Syndrome (TRAPS)

TRAPS: Shedding Defect or Constipated Monocytes?

TRAPS

<table>
<thead>
<tr>
<th>Human PBMCs</th>
<th>TNFR1(YFP)</th>
<th>GalT(Golgi)-CFP</th>
<th>merge</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNFR1-wt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNFR1-T50M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNFR1-H22Y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simon et al. PNAS 107:9801, 2010

Death domain

CRD1
CRD2
CRD3
CRD4

TNFRSF1A

13
12
11.12
12
13
14
15
21
22
23
24.1
24.3

TNFRSF1A Mutations Can Cause Dominantly Inherited Periodic Fever

Rheumatology 5th edn. 1637-57, 2011

The TNF Receptor-Associated Periodic Syndrome (TRAPS)

TRAPS: Shedding Defect or Constipated Monocytes?

Human PBMCs

TRAPS

TNFR1(YFP) | GalT(Golgi)-CFP | merge |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TNFR1-wt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNFR1-T50M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNFR1-H22Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simon et al. PNAS 107:9801, 2010

TRAPS

<table>
<thead>
<tr>
<th>Human PBMCs</th>
<th>TNFR1(YFP)</th>
<th>GalT(Golgi)-CFP</th>
<th>merge</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNFR1-wt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNFR1-T50M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNFR1-H22Y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simon et al. PNAS 107:9801, 2010

TRAPS

ROS

p38

TNF-α, IL-1, other cytokines

Rheumatology 5th edn. 1637-57, 2011

TRAPS

ROS

p38

TNF-α, IL-1, other cytokines

Rheumatology 5th edn. 1637-57, 2011
TRAPS-Etanercept Trial

Protein-Misfolding Disorders

CAPS: Three Diseases Caused by Mutations in One Gene

Common clinical features: fever and urticarial rash

- FCAS (familial cold urticaria) – cold-induced fever and urticarial rash
- Muckle-Wells – fever, urticarial rash, arthritis, sensorineural deafness, amyloidosis
- NOMID/CINCA – fever, urticarial rash, bony overgrowth, CNS disease

Mutations in a Gene in the Pyrin Family Cause Muckle-Wells Syndrome (MWS) and Familial Cold Autoinflammatory Syndrome (FCAS)

Rheumatology 3rd edn, 1730, 2003

SoJIA?

NLRP3 Mutation in NOMID/CINCA

Ivona Aksentijevich
Raphaela Golubach-Mansky

Fever

Inflammation

Cryopyrin (NLRP3)
inflammasome

IL-1β

pro-IL-1β

CARD

PYD

Pyrin

Cryopyrin

p10

p20

ASC

PYD

CARD

p10

p20

pro-caspase-1
caspase-1

complex

Treatment of 18 NOMID Patients with the IL-1 Receptor Antagonist Anakinra

Response to Canakinumab, as Compared with Placebo

Could This be NOMID?

Age 9 months, before therapy

3 days post treatment initiation

7 days post treatment initiation

Deficiency of the IL-1 Receptor Antagonist (DIRA)
Frequency of the mutation in the founder population

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Caucasian Controls (NY)</td>
<td>Neg in 364 DNA samples</td>
<td>Neg in 364 DNA samples</td>
<td>Neg in 364 DNA samples</td>
<td>Not done DNA samples</td>
</tr>
<tr>
<td>Newfoundland</td>
<td>0.4%</td>
<td>Not done DNA samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Netherlands</td>
<td>Neg in 364 DNA samples</td>
<td>Neg in 364 DNA samples</td>
<td>Neg in 364 DNA samples</td>
<td>Not done DNA samples</td>
</tr>
<tr>
<td>Puerto Rico</td>
<td>2.6%</td>
<td>Neg in 364 DNA samples</td>
<td>Neg in 364 DNA samples</td>
<td>Not done DNA samples</td>
</tr>
</tbody>
</table>

Extending the Pyrin Pathway:
Proline Serine Threonine Phosphatase Interacting Protein 1 (PSTPIP1/CD2BP1)

IL-1β Activation Disorders

Familial Shar-Pei Fever

A-C: Meatmouth variety
D: Traditional variety

Selective sweeps (regions identified by reduced heterozygosity)

FSF-disease association

The NIH Autoinflammatory Cohort

Genome-wide SNP genotype analysis identifies a region on chromosome 13 with evidence of recent selection and that is associated with FSF

B: FSF-disease association

Olsson et al. PLoS Genetics, 2011
Targeted next generation sequencing reveals increased frequency of reads in a region 5' of the HAS2 gene.

Olsson et al. PLoS Genetics, 2011

An Inflammasome Signature in PFAPA Flares

Stojanov et al. PNAS 108:7148, 2011

Anakinra in PFAPA

Stojanov et al. PNAS 108:7148, 2011

Behçet’s Disease: A Genetically Complex Disorder with an Autoinflammatory Component

<table>
<thead>
<tr>
<th>Allele freq</th>
<th>cases</th>
<th>Allele freq controls</th>
<th>Chi-squared</th>
<th>ChiSq P-value</th>
<th>Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs1518111 A/G</td>
<td>0.38</td>
<td>0.30</td>
<td>31.62</td>
<td>1.88E-08</td>
<td>1.41 (1.25 - 1.59)</td>
</tr>
<tr>
<td>rs924080 A/G</td>
<td>0.67</td>
<td>0.61</td>
<td>20.71</td>
<td>5.35E-06</td>
<td>1.31 (1.17 - 1.47)</td>
</tr>
</tbody>
</table>

*Breslow-Day Test for Homogeneity of the Odds Ratios: P = 0.54 and 0.71, for rs1518111 and rs924080, respectively.
Homozygotes for the Behçet’s Risk Allele Produce Reduced Amounts of IL-10

Gout as an Autoinflammatory Disease

Martinon and Glimcher JCI 116:2073-2075, 2006

Type 2 Diabetes Mellitus as an Autoinflammatory Disease

Atherosclerosis as an Autoinflammatory Disease

Summary

- The autoinflammatory diseases manifest constitutive or easily triggered innate immune activation
- Mendelian autoinflammatory diseases have provided important insights into the regulation of inflammation
- IL-1β activation and protein misfolding are two important mechanisms of Mendelian autoinflammatory disease
- Genome-wide association studies allow the identification of susceptibility loci for the more common but genetically complex autoinflammatory disorders
- Based on the demonstration of an important role for the inflammasome in their pathophysiology, a number of common disorders have been shown to have an autoinflammatory component
"It's a genome world . . .

Acknowledgments

NIH
Bev Barham Peter Kim
Karyl Barron Yohei Kirino
Andy Baxevanis Sivia Lapidus
George Bertias Julie Le
Trevor Blake Geun-shik Lee
Jillian Brady Paul Liu
Margaret Brown Amanda Ombrello
Jun Cheng Mike Ombrello
Puja Chitkara John O’Shea
Young-Hun Cho Francesca Puppo
Francis Collins Colleen Salitros
Mike Dean Aziz Sheikh
Lionel Feigenbaum Deb Stone
Tom Flesher Hong-Wai Sun
Patrycja Hoffman Marza Vital
Anne Jones Gery Wood
Steve Katz Qing Zhu

International
Athens – Phedon Kaklamakis
Birmingham – Graham Wallace
Cambridge – Kerstin Linizaki-Toh
Genentech – Vishva Dixit
Harford – Hank Feder
Hokkaido – Shigeaki Ohno
Istanbul – Anmet Güı
Nashville – Kathy Edwards
Seoul – Dongsik Bang
Tel-Hashomer – Mordechai Pras
Elon Pras
UCSD – Hal Hoffman
Uppsala – Mia Olsson
Wilmington – Balu Athreya
Wurstboro – Linda Tritle
Yokohama – Yoshi Ishigatsubo
Nobuhisa Mizuki

Suggested Reading

• Stojanov S, Lapidus S, Chitkara P, et al. (2011) Periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) is a disorder of innate immunity and Th1 activation responsive to IL-1 blockade. PNAS 108:7148–7153.